
www.allitebooks.com

http://www.allitebooks.org

Developing Web Applications
with Oracle ADF Essentials

Quickly build attractive, user-friendly web applications
using Oracle's free ADF Essentials toolkit

Sten E. Vesterli

P U B L I S H I N G

professional expert ise dist i l led

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Developing Web Applications with
Oracle ADF Essentials

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2013

Production Reference: 1160813

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78217-068-6

www.packtpub.com

Cover Image by Artie Ng (artherng@yahoo.com.au)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Sten E. Vesterli

Reviewers
Eugene Fedorenko

Amr Gawish

Dimitrios Stasinopoulos

Acquisition Editors
Erol Staveley

Antony Lowe

Lead Technical Editor
Madhuja Chaudhari

Technical Editors
Anita Nayak

Pragati Singh

Vrinda Nitesh Bhosale

Project Coordinator
Apeksha Chitnis

Proofreader
Paul Hindle

Indexer
Hemangini Bari

Graphics
Ronak Dhruv

Production Coordinator
Aditi Gajjar

Cover Work
Aditi Gajjar

www.allitebooks.com

http://www.allitebooks.org

About the Author

Sten E. Vesterli picked up Oracle development as his first job after graduating
from the Technical University of Denmark, and he hasn't looked back since. He has
worked with almost every development tool and server Oracle has produced in the
last two decades, including Oracle ADF, JDeveloper, WebLogic, SQL Developer,
Oracle Portal, BPEL, Collaboration Suite, Designer, Forms, Reports, and even Oracle
Power Objects.

He started sharing his knowledge with a conference presentation in 1997, and has
since given more than 100 conference presentations at Oracle OpenWorld, ODTUG,
IOUG, UKOUG, DOAG, and other user group conferences around the world. His
presentations are highly rated by the participants, and in 2010, he received the
ODTUG Best Speaker award.

He has also written numerous articles, participated in podcasts, and has written
the books Oracle Web Applications 101, The McGraw-Hill Companies and Oracle ADF
Enterprise Application Development – Made Simple, Packt Publishing. You can find his
blog at www.vesterli.com and follow him on Twitter as @stenvesterli.

Oracle has recognized Sten's skills as an expert communicator on Oracle technology
by awarding him the prestigious title of Oracle ACE Director, which is carried by less
than 100 people in the world. He is also an Oracle Fusion User Experience Advocate
and is a part of the Oracle Usability Advisory Board and participates in the Oracle
WebLogic Partner Council.

Based in Denmark, Sten is a partner in the Oracle consulting company Scott/
Tiger, where he works as a Senior Principal Consultant. When not writing books
or presenting, he is helping customers choose the appropriate technology for their
needs, teaching, mentoring, and leading development projects. In his spare time,
Sten enjoys triathlons, and he completed his first Ironman in 2012.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgement

As an ADF enthusiast, I'd like to thank Oracle for finally making a free version
of Oracle ADF available. With it's high productivity and advanced features, ADF
Essentials has the potential to become the standard way of writing data-handling
applications. With this book, I hope to help that become a reality.

Others have gone before me in the quest to get the combination of ADF Essentials,
MySQL, and GlassFish to work together. I'd especially like to thank Markus Eisele,
Duncan Mills, Chris Muir, Jobinesh Purushothaman, Bauke Scholtz, and Shay
Shmeltzer, whose work with ADF, Apache Shiro, MySQL, and GlassFish I have
benefited from.

I also appreciate the efforts of the people at Packt Publishing who have been
supporting this project, as well as my reviewers who have improved the book with
their excellent questions and suggestions.

Finally, I'd like to thank my lovely wife for her love, support, and understanding for
yet another book project.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Eugene Fedorenko is a senior analyst with extensive experience and management
skills. He works for the Ukrainian software company CS Integra. The company
focuses on banking software and is a leader in the local market. The company
has been an Oracle Platinum partner since 2010 and it was rewarded as the Best
Independent Software Vendor in the Eastern Europe region. Eugene graduated from
the Kharkiv Aviation Institute in 1999 with an M.Sc. in Computer Science. He began
his career in the company in 2000 as a developer. Currently, he is a senior analyst
and he is in charge of running projects connected to Oracle Application Development
Framework. He is the author of the ADF practice blog http://adfpractice-fedor.
blogspot.com and a member of the ADF Enterprise Methodology Group.

Amr Gawish is a Senior Oracle Fusion Middleware Consultant. He is a certified
WebCenter Portal and Oracle SOA implementation specialist. He has over five
years of experience with the Oracle Middleware stack. He holds a Bachelor's degree
in Math and Computer Sciences from Al-Azhar University in Egypt, and he has
been involved in many ADF, WebCenter, and SOA projects. He currently works at
infoMENTUM, which is an Oracle Gold Partner and a leading company in Oracle
Fusion Middleware, and it is the first company to be specialized in WebCenter
(both Content and Portal) in the EMEA region. It's what Amr calls "a place where
innovation comes true!"

Amr is also currently authoring a book about ADF Faces called Oracle ADF
Faces Cookbook, Packt Publishing.

I'd like to thank my wife for helping and encouraging me to
complete the review in time, and my daughter for always bringing a
smile to my face.

www.allitebooks.com

http://www.allitebooks.org

Dimitrios Stasinopoulos is a Certified Application Development Framework
Implementation Specialist with more than six years of experience in Oracle Fusion
Middleware and, more specifically, in ADF BC 11g. Dimitrios currently works as an
Oracle Fusion Middleware Consultant, mainly focusing on Oracle ADF, at e-DBA
Ltd., an Oracle Platinum Partner. Dimitrios has worked in several Oracle ADF
projects in various positions, from developer to architect, and he also enjoys teaching
and talking about Fusion Middleware.

In his spare time, Dimitrios is helping the ADF community by answering technical
questions in the Oracle ADF and JDeveloper forum, and he also maintains a blog
where he posts his findings and ideas: dstas.blogspot.com.

Dimitrios holds a B.Sc. degree in Computer Science from the Technological
Educational Institution of Larissa, Greece.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content

•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: My First ADF Essentials Application	 9

Getting ready	 10
Installing MySQL	 10

MySQL installation	 12
Configuring	 14
Changing MySQL options	 16
Does it work?	 16
Modifying some data	 18

Installing Java Development Kit and GlassFish	 19
Installing JDK 7	 19
Installing GlassFish	 21
GlassFish installation	 22
Setting up the domain	 23
Does it work?	 24
Installing the MySQL connector in GlassFish	 25
Adding a DataSource to GlassFish	 25

Installing ADF Essentials	 27
Getting ADF Essentials	 27
Installing the ADF Share libraries in GlassFish	 28
Setting the GlassFish JVM parameters	 29
Does it work?	 30

Installing JDeveloper	 30
JDeveloper or Eclipse?	 30
Which JDeveloper?	 31
JDeveloper installation	 32
Installing the MySQL Connector in JDeveloper	 32
Installing the GlassFish Server Extension	 33
Connecting to the GlassFish server	 35

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Building a simple ADF Essentials application	 36
Creating the application	 36
Database	 38
Business service	 38
Model layer	 41
Controller layer	 42
View layer	 42
Getting ready to deploy	 43
DataSource	 44
Application module configuration	 44
Change platform	 44

Running your first ADF Essentials application	 45
Can it run faster?	 47
Setting up WebLogic for MySQL	 47
Adding a DataSource to WebLogic	 47
Running your first ADF Essentials application again	 48

Summary	 48
Chapter 2: Creating Business Services	 49

Business service possibilities	 49
ADF Business Components	 50
Starting the example application	 53
How ADF business components work	 53
Building your own foundation	 56

Building framework extension classes	 57
Using framework extension classes	 58

Building entity objects for the example application	 59
Preparing to build	 60
Running the wizard	 61
Examining the result	 62
Setting the labels	 63
Autogenerated values	 63
Cleaning up the data types	 64
Cleaning up the associations	 66
Deleting superfluous associations	 67
Fixing wrong associations	 68
Removing invalid references from entity objects	 70

Building view objects	 71
The storyboard	 71
Building the customer view object	 72
Building the rental view object	 75
Creating a view link	 78

Application module	 79

Table of Contents

[iii]

Testing business components	 82
Summary	 83

Chapter 3: Creating Task Flows and Pages	 85
Building task flows	 86
Bounded and unbounded task flows	 86
Pages and fragments	 87
Task flow templates	 88
Example application	 89
Building the Rent DVD task flow	 89
Building the Return DVD task flow	 92

Memory scopes	 97
Other elements of task flows	 98

Building pages	 99
Using templates	 99
Facet definitions	 100
Page fragment template	 100
Page template	 102

Example application	 106
Building the customer search page	 106
Building the Return DVD page	 109
An alternative – ADF query panel	 109
Building the Rent DVD page	 109
Building a master page	 110
Running the page	 112

Using data bindings	 113
Showing a customer on a page	 113
Showing customer rentals on a page	 116
Adding navigation	 120

Summary	 120
Chapter 4: Adding Business Logic	 121

Adding logic to business components	 121
Logic in entity objects	 122

Overriding accessors	 122
Working with database triggers	 124
Overriding doDML()	 125

Data validation	 127
Declarative validation	 127
Regular expression validation	 129
Groovy scripts	 130
Method validation	 130

Logic in view objects	 130
Overriding accessors	 131
Change view criteria	 132

Logic in application modules	 134

Table of Contents

[iv]

Adding logic to the user interface	 135
Adding a bean method to a button	 135
Adding a bean to a task flow	 136
Accessing UI components from beans	 137
Accessing the binding layer	 138

Working with attribute values	 138
Working with operations	 139
Working with whole datasets	 140

Showing messages	 140
Example application	 141
Registering a rental	 142
Creating a bean	 142
Mapping the fields	 143
Establishing bindings	 144
Writing the code	 146

Registering a return	 147
Adding a column and a button	 147
Creating a bean	 148
Mapping the table	 148
Creating a view object method	 149
Publishing your method	 150
Establishing bindings	 151
Writing the bean code	 151

Marking items returned today	 152
Creating a transient attribute	 152
Binding the new attribute	 153
Coding the attribute return value	 153
Using the attribute value	 154
Other ideas	 155

Summary	 155
Chapter 5: Building Enterprise Applications	 157

Structuring your code	 157
Workspaces and projects	 158
The workspace hierarchy	 158
The directory structure	 159

Using version control	 160
Working with ADF libraries	 162

Creating ADF libraries	 162
Releasing ADF libraries	 163
Using ADF libraries	 164

Example application	 164
Creating the Master Application Workspace	 165

Creating the workspace	 165

Table of Contents

[v]

Adding to source control	 166
Creating the ADF library folder	 168

Creating the CommonCode workspace	 169
Creating the workspace	 169
Recreating the framework extension classes	 169
Check your JDeveloper preferences	 170
Adding to source control	 170
Creating the ADF library	 171
Releasing the ADF library	 172

Creating the CommonUI workspace	 172
Creating the workspace	 172
Creating the templates	 172
Adding an ADF library	 174
Adding to source control	 175
Creating and releasing the ADF library	 175

Creating the CommonModel workspace	 176
Creating the workspace	 176
Adding an ADF library	 176
Creating the entity objects	 176
Adding to source control and creating the ADF library	 177

Creating the RentDvd subsystem workspace	 178
Creating the workspace	 178
Adding ADF libraries	 178
Creating the view object	 179
Creating the application module	 180
Creating the task flow and page fragment	 181
Adding a binding	 181
Adding the business logic	 182
Remaining work	 182

Creating the ReturnDvd subsystem workspace	 182
Creating the workspace	 183
Adding ADF libraries	 183
Creating the Customer view object	 183
Creating the Rental view object	 184
Creating a View Link	 185
Creating an application module	 185
Creating the task flow	 187
Creating the Customer Search Page Fragment	 187
Creating the Rentals Page Fragment	 188
Registering a return	 188
Remaining work	 188

Finishing the Master Application Workspace	 189
Adding the ADF libraries	 189
Create the master page	 189

Summary	 190

Table of Contents

[vi]

Chapter 6 Debugging ADF Applications	 191
ADF logging	 191

Creating a logger	 192
Adding log statements	 192
Business logging	 194
JDeveloper shortcuts	 194
Reading the logs	 197

Logging in GlassFish	 199
Controlling domain logging	 200
Controlling individual loggers	 200

Debugging in JDeveloper	 201
Debugging code	 201
Understanding the ADF lifecycle	 203
Debugging task flows	 204
Debugging into ADF libraries	 206

Creating a source directory	 206
Creating a source JAR file	 207
Including the source in the master application	 208
Placing a breakpoint in an ADF library	 208

Debugging into the ADF source code	 210
Summary	 211

Chapter 7: Securing an ADF Essentials Application	 213
Apache Shiro basics	 213
Getting the software	 214
Installing the packages in your application	 214
Configuring your application for Shiro	 216

Advanced Shiro	 217
User database	 218
Form-based authentication	 219

The login page	 220
The login bean	 220
The login method	 221
The user filter	 222
The Shiro configuration	 223

Accessing the user	 224
Implementing authorization	 225

Can I see some ID, please?	 225
Are you a member, Sir?	 225

Disabling elements	 226
Removing elements	 227

Securing task flows	 227
Summary	 228

Table of Contents

[vii]

Chapter 8: Build and Deploy	 229
Creating a build script	 229

Creating the script	 231
Deploying a single application	 232
Building the master application	 233

Starting point	 233
Building the application EAR file	 234
Building all the subsystems	 235
Copying all ADF libraries	 236
Putting it all together	 237

Automated deployment to GlassFish	 237
Deploying from the command line	 238
Deploying from Ant	 238

Integrating other functionality in your build	 239
Preparing to go live	 239

Cleaning up your code	 239
Database connections	 240
Deployment platforms	 241
Print statements	 242

Tuning your ADF application	 242
Summary	 242

Index	 243

Preface
Oracle ADF is the most productive framework available today for building
data-handling web applications. With just a little training (like you can get from
this book), you will be able to build fully-functional applications to meet a wide
variety of needs.

Until September 2012, this powerful tool was reserved for organizations and projects
able to pay for an Oracle WebLogic Server license, which is not quite cheap. But that
month, after years of badgering by ADF enthusiasts, Oracle finally decided to make
a free, slightly limited version of Oracle ADF available to everyone.

This means the fastest, easiest, and cheapest way of building a data-handling
application today is with the technology stack described in this book:

•	 The free MySQL database
•	 The free GlassFish application server
•	 The free ADF Essentials toolkit
•	 The free JDeveloper development tool

The prescription
When pharmaceutical companies develop drugs, they are targeting specific ailments
or situations. Similarly, IT development platforms and frameworks target specific use
cases. And the "sweet spot" for the ADF framework is data-handling applications.

What is a data-handling application? It is an application whose primary function is
to gather data, process them, and display them back to the user as tables or graphs.
Examples of data-handling applications are membership databases, project and task
management, or accounting programs.

Preface

[2]

With very powerful declarative features, you can build most of your application
without having to write any code, and the advanced user interface components
make it easy to build an attractive user interface including interactive graphical
displays of your data.

Off-label use
After release, some drugs are found to be potentially useful for other conditions
than those for which they were developed and tested. This is called "off-label
use" — using the drug for something that it was not intended for.

A similar situation occurs in the development of IT systems –– developers choose
a tool that is a brilliant choice for one type of applications and try to use it for
other types.

The classic case of "off-label use" of ADF is to build an application where you require
absolute control over every pixel and every interaction. Such control is often possible
to achieve with ADF, but it takes a big effort and requires deep modifications to the
core of the framework.

Allergies
In medicine, some people are allergic to certain medicines and should not be
given them.

Similarly, there are some types of highly interactive applications like games or
photo editing that are definitely unsuited for ADF.

What's not there
ADF Essentials contains everything you need to build a data-handling application
–– but of course, there has to be some additional features only available to enterprise
customers with a full ADF license.

Some of the things not included in ADF Essentials include ADF Mobile, ADF
Security (which is based on Oracle Platform Security Services, available only in
WebLogic), Web Service Data Controls, ADF Desktop Integration, and so on. Refer
to the ADF Essentials "Frequently Asked Questions" document for the full list.

However, it is worth repeating that everything you need in order to build
data-handling applications is there. Actually, everything is there –– the
restriction is only a legal and licensing issue.

Preface

[3]

The sample application
Throughout this book, a sample application for a DVD rental shop is built.
You can follow along in JDeveloper as you read, learning ADF hands-on.

The data model is the standard sakila database schema that comes with
MySQL. The part we use consists of the customer, film, inventory, and
rental tables –– their relationship looks as shown in the following diagram:

customer

customer_id SMALLINT(5)

store_id TINYINT(3)

first_name VARCHAR(45)

last_name VARCHAR(45)

email VARCHAR(50)

address_id SMALLINT(5)

active TINYINT(1)

create_date DATETIME

last_update TIMESTAMP

Indexes

rental

rental_id INT(11)

rental_date DATETIME

inventory_id MEDIUMIN(8)

customer_id SMALLINT(5)

return_date DATETIME

staff_id TINYINT(3)

last_update TIMESTAMP

Indexes

inventory

film_id SMALLINT(5)

inventory_id MEDIUMIN(8)

store_id TINYINT(3)

last_update TIMESTAMP

Indexes

film

Indexes

film_id SMALLINT(5)

description TEXT

release_year YEAR

language_id TINYINT(3)

orignal_language_id TINYINT(3)

rental_duration TINYINT(3)

rental_rate DECIMAL(4,2)

length SMALLINT(5)

replacement_cost DECIMAL(5,2)

rating ENUM(...)

special_features SET(...)

last_update TIMESTAMP

title VARCHAR(255)

www.allitebooks.com

http://www.allitebooks.org

Preface

[4]

We will build three application screens: one simple screen for registering a rental,
and two connected screens for searching for a customer and registering a return.
These two screens look as shown in the following diagram:

First Name

Last Name

Email

Customer No.

Customer lookup

JOEL

JOEL.FRANCISCO@sakilacustomer.org

New search

First Name

Last Name

Email

JOEL

First Previous Next Last

JUGGLER HARDLY
DOGMA FAMILY

2006
2006
2006

PG
PG-13

G

2005-05-31
2005-06-16
2005-06-17

Title Year Rental Date
MURDER ANTITRUST

Rating

FRANCISCO

What this book covers
Chapter 1, My First ADF Essentials Application, shows you how to install all the
software and build a very simple application to prove that everything works.

Chapter 2, Creating Business Services, describes what Business Components are
and how they are used in the example application. No code required!

Chapter 3, Creating Task Flows and Pages, shows you how to build ADF task flows
that control the flow of your application and how to build the ADF pages where
the user interacts with the data. Still no code required!

Chapter 4, Adding Business Logic, explains how to add business logic to your
application –– this is where you'll have to write some actual Java code to
implement functionality that ADF does not offer declaratively.

Preface

[5]

Chapter 5, Building Enterprise Applications, demonstrates how you go about building
a larger application, using subsystems and ADF libraries to divide a big application
into more manageable parts. We'll quickly build the whole DVD rental application
again in this chapter using proper enterprise methodology.

Chapter 6, Debugging ADF Applications, shows you how to use ADF logging and
debugging features to troubleshoot any problems you might experience during your
ADF development.

Chapter 7, Securing an ADF Essentials Application, implements Apache Shiro to secure
your application. Remember that there were some ADF-specific security features not
part of ADF Essentials? This chapter shows you a fully-functional alternative.

Chapter 8, Build and Deploy, demonstrates how to use Apache Ant to create build
scripts that compile, build, and deploy an entire enterprise application, including
subsystems and ADF libraries.

What you need for this book
This book uses the following software:

•	 MySQL database version 5.6
•	 GlassFish application server 3.1
•	 ADF Essentials 11.1.2.4
•	 JDeveloper 11.1.2.4

Chapter 1, My First ADF Essentials Application, explains where to get the software,
how to install it, and how to configure all the parts to work together.

Who this book is for
This book is for every web developer who wants to build data-handling
applications quickly and efficiently. The book does not require any preconditions
–– even beginners can use the powerful declarative features of ADF to build basic
applications completely without programming.

Most real-life applications will of course require some programming to implement the
business logic that is specific to your application. ADF uses Java to implement business
logic, so a basic understanding of Java programming is required for most applications.
A bit of knowledge about web applications in general will also be beneficial.

Preface

[6]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Just like a SELECT statement can join data from multiple tables, a view object can
join data from multiple entity objects".

A block of code is set as follows:

protected void doDML(int operation, TransactionEvent e) {
 super.doDML(operation, e);
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

if (operation == DML_INSERT) {
 String insStmt = "{call insertActor (?,?)}";
 cstmt = getDBTransaction().createCallableStatement(insStmt,
 0);
 try {
 cstmt.setString(1, getFirstName());
 cstmt.setString(2, getLastName());
 cstmt.execute();
 }
 catch (Exception ex) {
 ...
 }

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
on the Next button moves you to the next screen".

Preface

[7]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Preface

[8]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

My First ADF Essentials
Application

In this chapter, we will install all the necessary (free!) software that we will be using
throughout the book to build applications using Oracle Application Development
Framework (ADF). We'll need:

•	 A database
•	 Java Development Kit and an application server
•	 The Oracle ADF Essentials libraries
•	 A development tool

For the purposes of this book, we will be using the popular and free MySQL
database. However, you can run Oracle ADF Essentials applications on any other
SQL database—so if you're a PostgreSQL fan, you don't have to change. You can also
use commercial databases—Oracle is offering Oracle Database Express Edition if you
are looking for a free version of an enterprise product.

Don't plan on running Oracle Database Express Edition directly
on your development machine if it is 64-bit Windows—this is not
supported and won't work. To run Oracle XE, you'll either need
Linux, an old 32-bit Windows install, or run your database inside
a 32-bit Windows virtual machine.

Similarly, you can run your ADF Essentials application on any JEE application
server. This book will describe how to use GlassFish, but you could also use other
open source JEE servers like JBoss or commercial offerings like Oracle WebLogic.

My First ADF Essentials Application

[10]

As our development tool, we will be using Oracle's preferred development tool,
Oracle JDeveloper. This free tool is currently the only supported way of building
Oracle ADF Essentials applications, but Oracle is working on supporting ADF
Essentials as part of their Oracle Enterprise Pack for Eclipse (OEPE) product.

With Eclipse and Oracle Enterprise Pack for Eclipse, you can already
build ADF applications for WebLogic. However, the tool does not
yet support building applications for ADF Essentials.

Getting ready
To simplify the instructions in this book, you should create a directory called
adfessentials and install everything there.

On Windows, place this directory in the root of your C: drive as C:\adfessentials.

On Mac/Linux, place this directory in the root of your filesystem as
/adfessentials. You will typically be prompted for a system administrator
or root password when creating the directory.

Installing MySQL
The MySQL server exists in both a Community Server edition and an Enterprise
Edition. The Enterprise Edition is the commercial version that has additional features
and a price tag—in this book, we will use the free Community Server edition Version
5.6.12. This can be downloaded from http://dev.mysql.com/downloads/mysql.

Would you like support with that?
Now is a good time to think about whether you want your installation
to be commercially supported. If you are setting up a development
environment or just want to run a membership application for your
local little league baseball team, you probably don't need commercial
support and can go with the open source/community options.
On the other hand, if you are setting up a production environment,
think about whether you or someone else in your organization feels
confident that they can handle any issues that might occur. If you
would like to be able to call on the friendly people from Oracle Support
to help you, you need to set up the commercial version and purchase a
support contract from Oracle.

Chapter 1

[11]

If you choose the Windows platform, you will be given the option to download the
MySQL Installer MSI package as shown in the following screenshot:

When you click on the Download link, you will be taken to a page where you can
select from two MSI Installer packages as shown in the following screenshot:

Choose the larger one to get everything in one download. The smaller option means
that you download only the installer program first, and this program will then
download the rest of the software.

My First ADF Essentials Application

[12]

If you are running Mac OS X, you have an option to select either a compressed TAR
file or a DMG installer as shown in the following screenshot:

For the easiest installation, choose the DMG installer file that matches your OS X
version and architecture. If you have a fairly recent Mac, you should choose OS X
10.7, 64-bit.

If you are running Linux, choose your distribution from the Platform options (or
Linux – Generic if your distribution is not listed), and then choose the download
that matches your Linux version and architecture (32- or 64-bit).

Once you have chosen your download, you will be prompted to sign up for a free
Oracle Web account (or log in with an existing account) when you click on the
Download link. You will need this account in order to download the ADF Essentials
software and JDeveloper, and probably later for other downloads as well.

MySQL installation
This section will walk you through the installation of the MySQL database on
Windows – if you are running another operating system, the process is similar.

Some installation options of some Linux distributions install MySQL
by default. If you are running Linux, you might want to check if you
already have MySQL.

Chapter 1

[13]

Start the installer, click on OK to any warnings about installing software and
changing your machine, and choose Install MySQL Products. Read and accept
the license agreement and allow it to check for later versions of the software.

For the purposes of this book, you can simply choose a Developer Default setup
type when prompted. If you already know MySQL and have specific ideas about
your installation, feel free to change the options.

Change the installation path to C:\adfessentials\MySQL\product and the data
path to C:\adfessentials\MySQL\data.

On Mac and Linux, the installer might simply decide to place the
software and data in /usr/local. That's fine, too.

In the Check Requirements step, you may be prompted to install various additional
packages—simply accept this. If you are told that you are missing various versions
of the Python programming language, you can just click on Execute a few times to
acknowledge the warnings.

The Developer Default installation includes database connectors for
Python, but if you are not using Python, they can't be installed. That's OK.

Once you are done with this step, the installer starts installing the actual MySQL
software as shown as follows:

www.allitebooks.com

http://www.allitebooks.org

My First ADF Essentials Application

[14]

Configuring
When the software is installed, you can click on Next a few times to start the
configuration. The first screen looks like this:

On this screen, you can leave the defaults:

•	 Development Machine
•	 Enable TCP/IP
•	 Port Number 3306
•	 Open Firewall for network access

In step 2 shown in the following screenshot, you are asked to provide a root
password for the database. You can always create separate users later.

If this is a non-critical development workstation, and you want to be
sure that you have the password written down, feel free to use this
example password: ADFsecret/13.

Chapter 1

[15]

The default installation on Mac and Linux sets a blank root password,
which is probably a bit too relaxed. To set the password on Mac/Linux,
execute the following command:
/usr/local/mysql/bin/mysqladmin –u root –p password

Press return when prompted for a password (the prompt is for the old,
empty password) and then provide a new password twice.

In step 3, you are prompted for a Windows service name as shown in the
following screenshot:

My First ADF Essentials Application

[16]

You can leave the defaults on this screen.

When you click on Next, the configuration of MySQL runs. When this is complete,
click on Next to install the samples and examples and then finish the installation.

Changing MySQL options
JDeveloper generates code with two vertical bars (|| or pipes) for string
concatenation, and while this is valid SQL92, it is not supported in a default MySQL
configuration. To enable this in MySQL, find the MySQL configuration file my.ini in
the database directory (for example, C:\adfessentials\MySQL\data).

Search for a line starting with sql_mode=. If such a line exists, add a comma after the
existing value and then the keyword PIPES_AS_CONCAT. If there is no sql_mode line,
add the following:

sql_mode=PIPES_AS_CONCAT

If you come from an Oracle background, you might want to set sql_mode=ORACLE
instead—this sets PIPES_AS_CONCAT and a couple of other settings to make MySQL
behave more Oracle-like.

You will need to restart the MySQL database in order for this change to take effect.
On Windows, you can open the Control Panel, choose Administrative Tools, and
then Services. Find the MySQL56 service and choose Action | Restart. You can
also restart the database from the MySQL Workbench by double-clicking on your
database in the Server Administration column to the right.

Does it work?
Once you have your Sakila database installed, you can start the MySQL Workbench
from the Start menu. You should see Local instance MySQL56 or similar to the left
under the SQL Development heading, as shown in the following screenshot:

Chapter 1

[17]

You can double-click on this and provide your root password to connect to
the database. If an SQL Editor window opens with various schemas to the left
(including your Sakila database) as shown in the following screenshot, your
installation was successful:

If you prefer to use a command line, you can start the MySQL 5.6 Command
Line Client from the Start menu, provide your root password, and type the
following command:

show databases;

My First ADF Essentials Application

[18]

If you see a couple of databases as in the following screenshot, your MySQL server is
running correctly:

The MySQL command line can also be started from a command prompt by running
the following command:

C:\adfessentials\MySQL\product\bin\mysql –u root -p

This attempts to log in as user root and prompts you for the password.

On Mac and Linux, the MySQL Workbench is a separate package. You
can either download and install it or check your installation using the
command line:

/usr/local/mysql/bin/mysql –u root –p

Modifying some data
As installed, the Sakila database does not contain any DVDs not returned—every
rental record has a return_date.

Chapter 1

[19]

Because we will be building a screen to return DVDs, we want some unreturned
rentals in the database. From either MySQL Workbench or the command line,
execute the following command:

update rental set return_date = null where staff_id = 2;

This clears the return date for about half the rentals, making them unreturned.

Installing Java Development Kit and
GlassFish
In order to be able to install and run GlassFish, your system first needs to have
JDK 7 installed.

Installing JDK 7
You can download Java Development Kit 7 from http://www.oracle.com/
technetwork/java/javase/downloads. You need the JDK download as shown
in the following screenshot:

Accept the license agreement and choose the right bundle for your operating system
and architecture, for example, Windows x64 for 64-bit Windows or Windows x86 for
32-bit Windows.

My First ADF Essentials Application

[20]

When the installation is complete, double-click on the downloaded file to install
the JDK. In the second step of the install wizard, change the directory to one placed
under your adfessentials folder, for example, C:\adfessentials\jdk1.7.0_25
as shown in the following screenshot:

When asked where to install the JRE, change the destination folder to C:\
adfessentials\jre7 as shown in the following screenshot:

Chapter 1

[21]

When the installation is complete, you need to set your JAVA_HOME environment
variable to point to the JDK directory (for example, C:\adfessentials\
jdk1.7.0_25).

Installing GlassFish
At the time of writing, Version 4.0 of GlassFish has been released, but
you cannot run ADF Essentials on it. So, this book will concentrate on
GlassFish 3.1.

GlassFish Server Open Source Edition 3.1.2.2 can be downloaded from http://
glassfish.java.net/download-archive.html. Like MySQL, GlassFish exists in
both an open source version and a commerical version—if you want the commercial
version, it can be found on the Oracle Technology Network under Middleware,
GlassFish Server.

As the following screenshot shows, there are install sets available for Windows, Linux,
Unix, Mac, and so on. Just click on the link for the file that matches your environment:

My First ADF Essentials Application

[22]

GlassFish installation
To install GlassFish, change to the directory where you downloaded the file and
execute the following command:

glassfish-3.1.2.2-windows.exe –j c:\adfessentials\jdk1.7.0_25

The GlassFish installation file sometimes cannot find your Java
Development Kit, especially on 64-bit Windows. The preceding
command works in all environments.

In the GlassFish installer, choose the following options:

•	 Installation type: Typical
•	 Install directory: c:\adfessentials\glassfish3
•	 Update tool: Don't choose this

You do not want your server to automatically update itself. If one of
your applications is not compatible with the new server version, your
users will experience that the application is suddenly down, and you
will have no idea that it has happened until they tell you.

•	 The installer runs and installs the GlassFish software shown as follows:

Chapter 1

[23]

Setting up the domain
When the software is installed, the installer will prompt you to create a domain
like this:

You can leave the default domain name and ports. You should set a password for
the admin user—again, if this is a non-critical development workstation and you
want to be sure that you have the password written down, feel free to use this
example password: ADFsecret/13.

If you are already running an Oracle database on the same
machine, change the default HTTP port to something other than
the default 8080 (because an Oracle database by default installs a
service on port 8080).

www.allitebooks.com

http://www.allitebooks.org

My First ADF Essentials Application

[24]

After the domain has been created and started, click on Next to see the installation
summary as shown in the following screenshot:

When you click on Exit, you will be prompted to register your GlassFish server, but
this is not mandatory.

Does it work?
In order to check if your GlassFish server is indeed running, you can enter the
URL http://localhost:<port> (for example, http://localhost:8080) in your
browser to see the Your server is now running confirmation message like this:

Chapter 1

[25]

Installing the MySQL connector in GlassFish
In order to be able to connect from GlassFish to a database, you need a connector.
GlassFish does not have a MySQL connector built-in, so you need to go to
http://www.mysql.com/products/connector and download the JDBC
Connector for MySQL (Connector/J). You may be prompted to log on to your
Oracle Web account.

Unpack the file and copy the mysql-connector-java-5.1.25-bin.jar file (or
whatever the version number is by the time you read this) into the lib directory
of your GlassFish domain (C:\adfessentials\glassfish3\ glassfish\domains\
domain1\lib or similar). Then, stop GlassFish and start it again (on Windows,
the start and stop commands are found on the Start menu under GlassFish Server
Open Source Edition).

Adding a DataSource to GlassFish
In order for your applications to be able to connect to your MySQL database, you
need to define a DataSource. Your applications will refer to the DataSource by name,
and the configuration on the GlassFish server defines which database the DataSource
will connect to. This gives the application server administrator the necessary
freedom to move the application between environments, move databases to other
servers, and so on.

My First ADF Essentials Application

[26]

You can set up a DataSource though the GlassFish Server Administration
Console. You specified the port for this service as the Admin port when you
installed GlassFish. The default port is 4848, so you can point your browser to
http://localhost:4848 to start the admin console.

Open the Resources node on the left and then JDBC. Click on JDBC Connection
Pools and then click on New in order to create a new connection pool. Give it the
name SakilaPool, choose javax.sql.DataSource as Resource Type, and choose
MySql as Database Driver Vendor. Your screen should look like this:

On the next screen, scroll down to the Additional Properties section and sort the
properties by name (by clicking in the Name header). Find the following settings
and set their value as follows:

•	 databaseName: sakila
•	 password: ADFsecret/13 (or whatever other password you chose when

you installed MySQL)
•	 servername: localhost
•	 user: root

When you have clicked on Finish to create the pool, click on the SakilaPool name
and then click on the Ping button to test that GlassFish can connect to MySQL.
You should see a Ping Succeded message as shown in the following screenshot:

Chapter 1

[27]

Then, click on JDBC Resources and then click on New in order to create a new
JDBC resource. Give it the JNDI name jdbc/SakilaDS and select the SakilaPool
connection pool for this JDBC resource as shown in the following screenshot:

Installing ADF Essentials
In order to run ADF Essentials applications in GlassFish, you will need to install the
ADF Share libraries in your GlassFish domain and you will need to configure the
GlassFish Server JVM memory parameters.

Getting ADF Essentials
You can get the ADF Essentials package from the Oracle Technology Network—at
the time of writing, the download URL is http://www.oracle.com/technetwork/
developer-tools/adf/downloads. If this does not work, you can get to the
Downloads for Oracle ADF 11g page by starting at the OTN homepage (http://
otn.oracle.com), clicking Software downloads to the left, then scrolling down
and clicking on JDeveloper and ADF, then selecting Application Development
Framework to the left, and finally clicking on the Downloads tab.

My First ADF Essentials Application

[28]

The download page will look something like this:

Accept the license agreement (read it first!) and then scroll down to the Oracle ADF
Essentials section shown in the following screenshot and download:

You may be asked to fill in a short survey before Oracle lets you have the software,
and you'll probably be asked to accept the license agreement once more—just to be
on the safe side.

The download you get is the adf-essentials.zip file.

Installing the ADF Share libraries in GlassFish
To install the ADF Share libraries in GlassFish, first unpack your adf-essentials.
zip file in a temporary directory to a flat structure without the directories. You can
use a command like unzip -j adf_essentials.zip to achieve this.

A default unzip will unpack to the same directory structure as the ZIP
file. This will not work. You must unpack everything into one directory,
ignoring the directory paths in the ZIP file.

Chapter 1

[29]

Copy all the files to the lib directory of the GlassFish domain where you want to run
ADF Essentials applications. If you performed the installation as described earlier in
the chapter, the lib directory will be c:\adfessentials\glassfish3\glassfish\
domains\domain1\lib.

Setting the GlassFish JVM parameters
Because ADF applications are a bit more memory-hungry than the average JEE
application, you will need to change the GlassFish JVM settings.

In a web browser, go to the GlassFish Administration page (by default on port 4848
of the server where you installed GlassFish, for example, http://localhost:4848).
Log in with the admin user you created during installation and go to Configurations
| server-config | JVM Settings. Open the JVM Options tab. Find the option
-XX:MaxPermSize= and set it to -XX:MaxPermSize=512m in order to allow
GlassFish to allocate more memory than default. Your screen should look like this:

My First ADF Essentials Application

[30]

Also, add the new value -Doracle.mds.cache=simple.

This value is read by the ADF framework and instructs it to not use
MetaData Services. This feature is not part of ADF Essentials (only of
full ADF)—if you forget to set this parameter, your ADF application
will fail with an oracle.adf.share.ADFShareException:
getMDSInstance error.

Then, click on Save and restart your GlassFish server. You might notice a Restart
Required message in the top-left of your server administration window, like this:

You can click on the message to see why a restart is necessary and then click on the
Restart button, or you can use the commands on the Windows Start menu.

Does it work?
There is no easy way to immediately determine if you installed ADF Essentials
correctly into your GlassFish server, so we'll get right on to the task of building
simple ADF Essentials applications to prove that your ADF Essentials libraries
are indeed correctly installed.

Installing JDeveloper
Now your GlassFish server is ready to run ADF applications—but we still need
a tool to build them.

JDeveloper or Eclipse?
There are two tools for building Oracle ADF applications: Oracle JDeveloper and
Eclipse with Oracle Enterprise Pack for Eclipse. There are two kinds of ADF: Full
ADF, which needs a WebLogic server (and a license fee), and ADF Essentials,
which is free.

Chapter 1

[31]

ADF Essentials is enough to build most applications. Some features
that are only available in Full ADF include ADF Mobile, ADF Desktop
Integration, ADF Security, ADF remote taskflows, MetaData Services,
and so on. Refer to the ADF Essentials FAQ for a full list: http://
www.oracle.com/technetwork/developer-tools/adf/
overview/adfessentialsfaq-1837249.pdf.

At the time of writing, JDeveloper was supported for developing both kinds of ADF
applications, but Oracle Enterprise Pack for Eclipse is only supported for building
applications for Full ADF. We can see the same in the following diagram:

JDeveloper WebLogic
Full ADF

GlassFish
ADF Essentialsnot supported

Eclipse with
OEPE

Which JDeveloper?
There are two flavors of JDeveloper:

•	 The 11g Release 1 branch (called 11gR1, version numbers 11.1.1.x. At the time
of writing, the latest was 11.1.1.7.0)

•	 The 11g Release 2 branch (called 11gR2, version numbers 11.1.2.x. At the time
of writing, the latest was 11.1.2.3.0)

11.1.1.7.0 is actually the latest release, and Oracle are developing all of their big internal
applications using 11gR1 versions. These are the ones that get bug fixes first and are
the only ones to offer support for modern distributed version control tools like Git.

Unfortunately, only the 11gR2 branch has support for GlassFish, so this is the version
we have to use for developing applications with ADF Essentials.

Oracle is promising eventually to bring these two tracks together in a
JDeveloper 12c version. If this version is available by the time you read
this book, choose that one. It might also have support for GlassFish 4.0.

My First ADF Essentials Application

[32]

JDeveloper installation
You can download JDeveloper from the Oracle Technology Network (OTN) website
at http://otn.oracle.com. Click on the Downloads link and you will normally
find a link to JDeveloper under Popular Downloads to the right. If it's not there, find
it via the download index on the left.

Read and accept the OTN JDeveloper License and download the latest version for
your platform. At the time of writing, this was 11.1.2.4.0. You'll want the Studio edition
because this one includes Oracle ADF. Choose the install for your platform—the
Windows install is an .exe file, and the Linux install is an executable (.bin). For other
platforms, you will need to get the Generic installer. If you need the Generic installer,
refer to the installation guide (under Prerequisites & Recommended Install Process)
for detailed instructions. If you're not signed in to www.oracle.com, you'll have to do
so before you can download.

The installation of JDeveloper on Windows is straightforward—just run the
jdevstudio11124install.exe file. When prompted for an install directory, select
C:\adfessentials\Middleware111240. Choose to perform a Typical installation.

If you later decide to install other versions of JDeveloper on your
development machine, keep each version in its own directory.

The first time you start JDeveloper, you will be prompted to select a role. Select
Studio Developer and remove the checkmark in the Always prompt for role
selection on startup box.

Installing the MySQL Connector in JDeveloper
By default, JDeveloper does not come with a connector to MySQL databases.
However, you have already downloaded the JDBC Connector for MySQL
(Connector/J) that you can use in JDeveloper as well.

To install it in JDeveloper, copy the mysql-connector-java-5.1.25-bin.
jar file (or whatever the version number is by the time you read this) to C:\
adfessentials\middleware111240\jdeveloper\jdev\lib.

The driver just needs to be placed on JDeveloper's classpath—the
preceding directory is one possible option.

Chapter 1

[33]

Then, from within JDeveloper, choose Tools | Manage Libraries. Click on New
to add a new library and call it MySQL Driver. Choose the Class Path node and
click on Add Entry. Navigate to the C:\adfessentials\middleware111240\
jdeveloper\jdev\lib directory, choose the JAR, file and click on Select.

Choose the JAR file itself, not the directory.

The Create Library dialog should look like this:

Click on OK twice to close the dialog boxes. Now you have the MySQL driver
available for your projects.

Installing the GlassFish Server Extension
In order to make it easier to manage the GlassFish server from within JDeveloper,
you should install the GlassFish Server Extension into JDeveloper.

www.allitebooks.com

http://www.allitebooks.org

My First ADF Essentials Application

[34]

In JDeveloper, choose Help, Check for Updates. In step 2 of the Check for Updates
wizard, make sure that Open Source and Partner Extensions is checked. In step 3,
find the Glassfish Server Extension and select it. Click on Next and then click on
Finish, and allow JDeveloper to restart. When JDeveloper starts again, you should
see some GlassFish icons on your toolbar, like this:

You also need to tell JDeveloper where you have installed GlassFish. Choose Tools
| Preferences | GlassFish Preferences. If you only see a Load Extension button,
click on it to load the GlassFish. Then, update all the paths to match your GlassFish
installation. If you use the same directories as this book, your dialog box will look
like this:

Chapter 1

[35]

Connecting to the GlassFish server
If your GlassFish server is not running, start it. On Windows, this is done via
Start | GlassFish Server Open Source Edition | Start Application Server, or
you can use the new GlassFish icons on the toolbar in JDeveloper.

Choose File | New | Connections | Application Server Connection. Give your
connection a name and choose Glassfish 3.1 as Connection Type. In step 2, provide
the admin username (admin) and leave the password field blank (the default GlassFish
install doesn't set an admin password). In step 3, you can leave the default hostname
and ports.

In step 4 of the wizard, test the connection. You should see all tests successful
as shown in the following screenshot if your GlassFish server is running and
JDeveloper can connect to it:

My First ADF Essentials Application

[36]

Building a simple ADF Essentials
application
All ADF applications consist of the following parts:

JSF pages

ADF Task Flows

Data Controls

Business Services

Database

View layer

Controller layer

Model layer

Business Services layer

Database layer

•	 View layer: The View layer consists of your JSF pages.
•	 Controller layer: The Controller layer consists of ADF Task Flows.
•	 Model layer: The Model layer consists of the Data Controls that connect

the View/Controller layers to the business service.
•	 Business Service layer: The Business Service layer provides services to query

and manipulate data. There are many ways to build business services—in
this book, we will use ADF Business Components, but you can also use, for
example, JPA Entities and EJB 3.0 Session beans, POJOs, web services, and
so on.

•	 Database layer: The Database layer is where your data is stored persistently.

This section will briefly take you through the necessary steps to create an ADF
Essentials application with the simplest possible representation of all of these layers.
If you follow the steps on your own environment, you will get a first-hand feel for
ADF development with JDeveloper. The next chapters will explain the various parts
in more detail.

Creating the application
To create the application, click on the New Application link in the
Application Navigator or choose File | New | Applications. Choose
Fusion Web Application (ADF).

Chapter 1

[37]

Give your application a name, provide a directory, and enter an application package
prefix. This prefix is used in Java package naming in the application, so it should
adhere to your normal Java naming standards. If your organization has the Internet
domain company.com, your application package prefix will normally be something
like com.company.<application>, for example, com.company.adfdemo1.

You can leave the defaults for the Model and ViewController projects in the
following steps of the wizard.

When you are done, your screen will look like the following screenshot, with your
application name at the top of the Application Navigator to the right, two projects
under it, and a quick start checklist for the application in the middle:

You can explore the checklist to get a feel for the steps in ADF application
development—it includes both detailed task lists and links to relevant places
in the documentation.

My First ADF Essentials Application

[38]

Database
We will be working on the film table in the MySQL Sakila demo database. To create
a connection, choose File | New | Connections | Database Connection. Give your
Connection Name, choose Connection Type as MySQL, fill in Username as root,
and give the Password. Remember that the default port is 3306 and we use the
default sakila database. Your screen should look like this:

In the Library field, click on Browse and select the MySQL Driver you created when
you installed JDeveloper (it's under the User node in the Select Library dialog).

Click on Test Connection—if you get a Success! message, your driver is installed
correctly and you have provided the right connection information.

Business service
To start building business services for your application, select the Model project
in the Application Navigator and choose File | New | Business Tier | ADF
Business Components | Business Components from Tables as shown in the
following screenshot:

Chapter 1

[39]

In the Initialize Business Components Project wizard, choose your Sakila
connection, choose SQL92 as the SQL Platform, and choose Java as Data Type Map.

The SQL Platform setting controls the SQL statements that ADF
generates. If you know you'll be using a specific database, you can select
it to allow ADF to build optimized SQL for that platform. SQL92 is a
standard that is supported by all modern databases, including MySQL.
The Data Type Map setting controls the Java objects used by ADF.
Unless you are using an Oracle database, select Java.

1.	 In step 1 of the wizard, click on Query, choose the film table on the left,
and use the > button to move it to the Selected box in order to create an
entity object.

2.	 In step 2, move the Film entity object to the Selected box on the right in
order to create an entity-based view object.

3.	 In step 3, don't change anything (that is, do not create any query-based
view objects).

4.	 In step 4, leave the defaults (that is, create an Application Module).

My First ADF Essentials Application

[40]

5.	 In step 5, you can leave the defaults (that is, do not create a business
component diagram). If you are curious, feel free to check the checkbox
to see the documentation JDeveloper can automatically generate for you.

6.	 In step 6, just click on Finish.

JDeveloper creates a number of objects for you—you can see them in the
Application Navigator.

You can test your business components by right-clicking on the AppModule node
(with the suitcase icon) and choosing Run as shown in the following screenshot:

This starts the Business Components Tester application shown in the following
screenshot, which allows you to interact with your business service through a
simple UI:

Chapter 1

[41]

Model layer
The model layer is automatically created for you when you create the business
components. You can see the available data elements and operations in the Data
Controls palette in the Application Navigator as shown in the following screenshot:

My First ADF Essentials Application

[42]

Controller layer
In the controller layer, we define the screens that make up the application and the
possible navigation flows between them. For now, we'll just use the Unbounded
Task Flow that every ADF application has.

Open the ViewController project and then Web Content | Page Flows to see the
adfc-config element that represents the Unbounded Task Flow. Double-click on
this element to open a visual representation of the flow. It's empty at the moment
because we haven't added any pages yet.

Drag a View activity in from the Component Palette on the left as shown in the
following screenshot and give it a name (for example, FilmPage):

You'll notice that the view component has a yellow exclamation mark, indicating
a warning. This means that we have added a view component to the task flow,
but we have not actually defined the page yet. So, let's do that.

View layer
In the View layer, we define the actual JSF pages that make up the application.
Simply double-click on the page you just created in the unbounded task flow to
open the Create JSF Page wizard. Set Document Type to Facelets and leave the
page layout at Blank Page. We'll get back to using layouts and page templates in
a later chapter.

Click on OK to actually create the page and open it in JDeveloper. You'll see an
empty page in the Design view.

Chapter 1

[43]

Find the Data Controls panel to the left and expand it. Expand the
AppModuleDataControl node and drag the FilmView1 object onto the page as
shown in the following screenshot:

When you release it, JDeveloper will automatically prompt you for a choice of
component. Choose Table | ADF Read-Only Table. In the Edit Columns dialog,
check the Enable Sorting and Enable Filtering checkboxes and click on OK.

Your page will show a representation of an ADF table full of mysterious #{…xxx}
labels and fields. They represent bindings to the data control and will be replaced
with actual labels and data at runtime—we'll get back to this in a later chapter.

By default, your application gets a long and complicated URL. You can change this by
right-clicking on the ViewController project and choosing Project Properties. Select
the Java EE Application node and set the Java EE Web Context Root to something
simpler. It will typically default to something like FilmApp1-ViewController-
context-root—you can change this to something like FilmApp1.

Click on Save All to save your work.

Getting ready to deploy
There are some settings that you need to change in order to make your application
run with ADF Essentials on GlassFish.

www.allitebooks.com

http://www.allitebooks.org

My First ADF Essentials Application

[44]

DataSource
You just want your application to include the name of your database connection,
not the actual connection details. In order to ensure this, you need to right-click on
your Model project and choose Project Properties. In the properties dialog, choose
Deployment and then Edit to edit the deployment profile. Choose Connections and
then Connection Name Only as shown in the following screenshot:

Then, click on OK a couple of times to close the dialog box.

Application module configuration
In the current version of JDeveloper, the default application module configuration
does not work with GlassFish, so you need to change the bc4j.xcfg file.

Right-click on the Application Module in the Model project and choose
Configurations. This opens the bc4j.xcfg file in the Overview mode. Find the
Source tab at the bottom of this panel to see the actual contents of this file.

Find the two <Custom JDBCDataSource=…/> lines. If they start with java:comp/
env, change them to look like this:

<Custom JDBCDataSource="jdbc/SakilaDS">

Change platform
Finally, you need to tell JDeveloper that you want to run your ADF Essentials
application on the GlassFish platform. You do this in two places:

•	 In the project properties for the ViewController project (choose
Deployment and edit the deployment profile as shown in the preceding
screenshot, choose Platform, and then GlassFish 3.1) as shown in the
following screenshot:

Chapter 1

[45]

•	 In the application properties (choose Application | Application Properties
on the menu, then Deployment, and edit the deployment profile as in the
preceding screenshot. Choose Platform and then GlassFish 3.1).

Running your first ADF Essentials application
Now your first ADF Essentials application is ready to deploy and run!

Choose Application, Deploy. You should see a default deployment profile
(something like FilmApp1_Project1_FilmApp1). Choose this default profile and
choose Deploy to Application Server. Choose your GlassFish connection and click
on Finish to deploy your application.

The log panel at the bottom of the JDeveloper window will show deployment
messages on the Deployment tab.

[03:34:42 PM] ---- Deployment started. ----

[03:34:42 PM] Target platform is (Glassfish 3.1).

[03:34:42 PM] Retrieving existing application information

[03:34:42 PM] Running dependency analysis...

[03:34:42 PM] Building...

[03:34:49 PM] Deploying 2 profiles...

[03:34:51 PM] Wrote Web Application Module to C:\JDeveloper\mywork\
FilmApp1\ViewController\deploy\FilmApp1_ViewController_webapp.war

[03:34:55 PM] Wrote Enterprise Application Module to C:\JDeveloper\
mywork\FilmApp1\deploy\FilmApp1_Project1_FilmApp1.ear

My First ADF Essentials Application

[46]

[03:34:55 PM] Deploying Application...

[03:38:28 PM] Application Deployed Successfully.

[03:38:28 PM] Elapsed time for deployment: 3 minutes, 46 seconds

[03:38:28 PM] ---- Deployment finished. ----

Have patience—it takes a while (up to several minutes) for JDeveloper to bundle up
the necessary ADF Essentials libraries with your application and deploy it onto the
GlassFish server.

Once the deployment is finished, you can run your application in a web browser.
Your URL will be of the form http://<server>:<port>/<web context root>/
faces/<page name>. Remember that you set the web context root in the properties
of the ViewController project. In the preceding section on the controller layer,
we set it to FilmApp1. An example of a URL would be http://localhost:8080/
FilmApp1/faces/FilmPage.jspx. Your page should look like this:

Notice some of the cool features of the ADF table component we used:

•	 You can resize the columns by dragging the column borders
•	 You can reorder columns with drag-and-drop
•	 New records are loaded as you scroll down (try dragging the slider on

the vertical scrollbar)
•	 You can sort columns by clicking on the header
•	 You can filter data by entering filtering criteria in the filtering field over

 each column

Chapter 1

[47]

Can it run faster?
Because the deployment from JDeveloper to GlassFish currently takes quite a long
time, many developers choose to run their new code first in the WebLogic server
that is pre-integrated into JDeveloper. If you set up WebLogic for MySQL, a simple
application like the preceding should be able to start in 20-30 seconds instead of
several minutes.

Hopefully, the deployment speed to GlassFish will be improved in
the future. Check out the http://www.adfessentials.com for
any tips about speeding up deployment that have been discovered
after the publication of this book.

Setting up WebLogic for MySQL
If you want to run MySQL applications in the built-in WebLogic server, you first
need to copy the MySQL Connector JAR (mysql-connector-java-5.1.25-bin.
jar) to a directory where WebLogic can find it. A good choice is the directory for
external libraries in the JRA installation: C:\adfessentials\middleware111240\
jdk160_24\lib\ext.

If you are familiar with WebLogic, you should be able to place the
MySQL connector in the WebLogic default domain lib directory.
However, in JDeveloper 11.1.2.4, this does not work. Either use the
preceding directory or modify the domain startup scripts.

Adding a DataSource to WebLogic
Once you have the driver installed, you need to define a datasource with the
right name like you did earlier in the chapter for GlassFish.

First, in JDeveloper, start the built-in WebLogic server with the command
Run | Start Server Instance. The first time you start the server, you will be
prompted for a password to the default domain. Watch the messages in the
log window until you see the following command:

<Server started in RUNNING mode>

Then, open a web browser and type in the address http://localhost:7101/
console. Log in with the admin user and the password you provided. After a
little while, the WebLogic console window opens.

My First ADF Essentials Application

[48]

Expand the Services node under Domain Structure to the left and select the Data
Sources node. Click on New | Generic Data Source. Give your datasource a Name
(SakilaDS) and a JNDI Name (jdbc/SakilaDS), and choose Database Type as
MySQL. In the next two steps, just leave the defaults. On the Connection Properties
page, provide your connection details:

•	 Database Name: sakila
•	 Host Name: localhost
•	 Port: 3306
•	 Database User Name: root
•	 Password and Confirm Password: Your database root password, for

example, ADFsecret/13
On the following screen, click on Test Configuration. You should see Connection
test succeeded.

Click on Next (not Finish) and check the checkbox next to DefaultServer. Then,
click on Finish.

In WebLogic, a JDBC driver definition is by default not connected
to any server. If you forget to check the checkbox associating the
SakilaDS datasource with the DefaultServer, the server can't
connect to the database.

Running your first ADF Essentials application
again
To run your first ADF Essentials application in the built-in WebLogic, server
simply right-click on FilmPage in the Application Navigator and choose Run.
The application will automatically be re-built, deployed to the built-in WebLogic
server, and opened in a browser.

Summary
We've set up the entire infrastructure for building ADF Essentials applications: a
MySQL database, the GlassFish server, and the JDeveloper integrated development
environment. We have also installed the necessary interconnections and wired
everything together so our first ADF Essentials application could run.

In the next chapter, we'll learn more about how to develop business services using
ADF Business Components for Java.

Creating Business Services
Now that we have set up all the necessary software and have built a simple application
to verify it, we can start building real-life ADF applications. Remember that an ADF
application consists of the following layers as:

Business Services Business Service Layer

Database layerDatabase

JSF pages View Layer

Data Bindings Model Layer

Controller LayerADF Task Flows

In this chapter, we will concentrate on the Business Service layer. First, we will
discuss business services in general, then we will build some necessary base
components, and finally we will build the necessary ADF Business Components
(ADF BC) for the sample application described in the introduction.

Business service possibilities
The business service layer is doing most of the work that the application performs,
such as delivering data, accepting instructions to create, change, or remove data, and
performing more complicated calculations and operations. This layer interacts with
the user interface part of the application through the use of ADF bindings.

Creating Business Services

[50]

There are several ways of building business services in an ADF application, but by far
the easiest is to use ADF Business Components (ADF BC) based on database tables.
This is the approach taken in this book and in many tutorials on ADF development. If
you are just starting out with ADF, you should definitely master this way of building
applications first.

Other alternatives are:

•	 Building Plain Old Java Objects (POJOs) to encapsulate some other data
source (for example, web services) and then creating data controls based on
these POJOs.

•	 Building Business Components on top of other data sources rather than on
top of database tables. This approach requires some programming, so it's not
recommended until you have some ADF experience.

If you are just starting out with ADF, build your first applications with
ADF BC on database tables. If your architecture requires you to start
with ADF and web services in your first ADF application, it is strongly
recommended that you get someone to help you with the architecture.

The rest of this chapter will discuss ADF Business Components on database tables.

ADF Business Components
The ADF Business Components architecture has five types of components, listed
as follows:

•	 Entity objects
•	 Entity associations
•	 View objects
•	 View links
•	 Application modules

Chapter 2

[51]

View
Object

View
Object

Table Table

View Link

Association

VO
instance

VO
instance

View Link
Instance

Application Module

View
Object

View
Object

Entity
Object

You can think of Entity Objects as representations of your database tables — there
will be one entity object for every table your application uses.

You can also base Entity Objects on database views, as long as
these database views are updatable. See http://dev.mysql.
com/doc/refman/5.6/en/view-updatability.html
for information on when MySQL views are updatable. In some
databases (for example, Oracle), you can define special INSTEAD
OF triggers to make views updatable.

Entity objects take care of the object-relational mapping and perform many
optimizations for you; for example, entity objects cache data in the middle
ties to save database round trips.

Creating Business Services

[52]

Similarly, you can think of Associations as representations of the relations between
tables in your relational database –– there will normally be one association for
every foreign key relationship between tables in your database. Interestingly,
you can also create associations to represent relationships between tables that are
not implemented in the database. So, if your database for some reason does not
implement all the foreign keys that are actually part of your business logic, you
can add associations in the business service layer.

View Objects represent the datasets you need for a specific purpose –– you can
think of them as representations of the SQL SELECT statements you would write
to get the data you need. Just like a SELECT statement can join data from multiple
tables, a view object can join data from multiple entity objects. Most view objects
in your application will be based on data from entity objects. View objects based
on a single entity object can be made updatable, while view objects based on several
entity objects can typically only update the attributes from one of the view objects.
However, if you have a requirement for a very specific dataset and you can write a
SELECT statement that retrieves this data, you can create an SQL-based view object.
Such SQL-based view objects are of course not updatable.

View objects can have View Criteria that represent various filters on the data in the
view object. This allows you to define one view object with the data you need and
then define multiple view criteria which you can apply in various circumstances.

View Links represent master-detail relationships between view objects. They will
typically be based on entity associations (again based on foreign keys in the database),
but you can create any view link you like to link two view objects. When view objects
are connected with a view link, the ADF framework will automatically handle the
master-detail coordination. When you change to another master record, the detail view
object will automatically be refreshed with the details for the new master.

Application Modules collect and coordinate a number of view object instances.
The application module is the business service that is actually exposed to the user
interface as a data control, so in order to use a view object in the user interface
of the application, you need to include the view object in an application module.
One view object can be used in multiple application modules, and it can even be
used in several different roles inside the same application module. The application
module handles the database transactions and offers methods to commit or rollback
changes to the database across view objects. This gives the developer control over
the transactions –– you can allow a user to change data in many view objects without
needing to worry about state maintenance; data is not committed until the COMMIT
operation is executed.

Chapter 2

[53]

Starting the example application
Through out this book, we will be building a small application based on the Sakila
MySQL demo database, which contains data objects for a chain of DVD rental stores.

If you want to follow along in JDeveloper as you read, create a new application
using the Fusion Web Application template. Navigate to File | New to bring up the
New Gallery dialog box and in this dialog, navigate to Applications | Fusion Web
Application (ADF).

In step 1 of the wizard, name your application something like RentalApp and
provide an application package prefix that makes sense to you –– if you work for
company.com, you could use com.company.adfdemo.

When working through the examples, in this book you can either use the
exact example names or modify the names of objects, classes, methods,
and so on, slightly from what the book says. If you use the suggested
names, you will get through the examples quicker. If you change the
names, you will experience some errors as you go along, so it will take
longer. However, it will also help you better understand how the different
pieces of the ADF puzzle fits together.

Change the default names of the model and view/controller projects to something
other than the default (for example, RentalModel and RentalView). This is a good
practice for when you start building larger applications –– you will get confused and
there will be naming conflicts in the ADF framework if your application contains
multiple projects with generic Model and ViewController names.

Oracle has published a document called ADF Naming and Project Layout
Guidelines that you can download from http://www.oracle.com/
technetwork/developer-tools/adf/learnmore/adf-naming-layout-
guidelines-v2-00-1904828.pdf.

How ADF business components work
When you create an ADF business component (entity object, view object, and
so on), JDeveloper initially creates only an XML file describing the object (which
table, which attributes, and so on). Part of the XML file for an entity might look
like as follows:

<?xml version="1.0" encoding="windows-1252" ?>
...
<Entity
 xmlns="http://xmlns.oracle.com/bc4j"
 Name="Film"

www.allitebooks.com

http://www.allitebooks.org

Creating Business Services

[54]

 Version="11.1.2.64.36"
 DBObjectType="table"
 DBObjectName="sakila.film"
...
 <Attribute
 Name="FilmId"
 IsNotNull="true"
 ColumnName="film_id"
 SQLType="SMALLINT"
 Type="java.lang.Integer"
 ColumnType="SMALLINT"
 TableName="sakila.film"
 PrimaryKey="true">
...
</Entity>

At runtime, the ADF framework automatically creates and runs the Java classes
that read these XML files. For example, ADF creates an instance of the oracle.jbo.
server.EntityImpl class whenever ADF needs to work with an entity object. The
specific instance of the class reads the XML configuration file in order to provide the
necessary operations –– for example, if your entity object has a Title attribute, the
EntityImpl class automatically provides a getTitle() method.

However, you are not limited to the default behavior of these Oracle-supplied
classes. If you want to change the way a business component works, you can.
The way you do this is to ask JDeveloper to generate a specific Java class for your
business component. For example, if you want your own class for the Film entity
object, you can open the Java tab in the entity object and click on the pencil icon. In
the Select Java Options dialog, you can click on Generate Entity Object Class with
some methods, as shown in the following screenshot. In our example, Accessors and
Data Manipulation Methods are selected:

Chapter 2

[55]

The JDeveloper help explains which methods can be generated.

This creates a Java class that ADF will now use instead of the standard Oracle-supplied
EntityImpl class. Part of the class is shown as follows:

package com.adfessentials.rental.model.entity;
...
public class FilmImpl extends EntityImpl {
...
 /**
 * This is the default constructor (do not remove).
 */
 public FilmImpl() {
 }

 /**
 * Gets the attribute value for Title
 * @return the value of Title
 */
 public String getTitle() {
 return (String)getAttributeInternal(TITLE);
 }

 /**
 * Sets <code>value</code> as the attribute value for Title.
 * @param value value to set the Title
 */
 public void setTitle(String value) {
 setAttributeInternal(TITLE, value);
 }
...
 /**
 * Custom DML update/insert/delete logic here.
 * @param operation the operation type
 * @param e the transaction event
 */
 protected void doDML(int operation, TransactionEvent e) {
 super.doDML(operation, e);
 }
}

The class definition shows that your own class (FilmImpl) extends EntityImpl.
This is an important concept in Java and other object-oriented languages, and it
means that if you don't define anything differently, your own class will work just
like the class it extends.

Creating Business Services

[56]

Immediately after you generate Java, your application works in
exactly the same way. The generated code calls methods from the
standard Oracle classes to ensure that the functionality does not
change. Only when you start modifying the generated code does the
application start to behave differently.

Building your own foundation
The ability to create your own Java implementation classes is a powerful feature, but it
can be made even more powerful by inserting an extra layer in the object hierarchy.

If you generate Java as described previously, every one of your Java classes is wired
directly to one of Oracle's classes. This is not a good idea –– in case you decide that
you want some new feature built into every entity implementation class, you would
have to change each of the individual classes (FilmImpl, RentalImpl, and so on).

Fortunately, there is a better way: you can create your own framework extension
classes. These are sets of classes that extend the Oracle-supplied classes and sit
between your specific implementation class and the Oracle-supplied class. For
example, you can create your own com.company.adf.framework.EntityImpl class
that extends the Oracle-supplied class (oracle.jbo.server.EntityImpl), and then
let your specific implementation classes (for example, FilmImpl) extend your own
class instead of Oracle's, as shown in the following diagram:

com.company.myapp.model.entity.Filmlmpl

com.company.adf.framework.Entitylmpl

oracle.jbo.server.Entitylmpl Oracle-supplied class

Your framework extension class

Your specific business
component class

The advantage of this approach is that you have one point under your own control
with which to change the general behavior of the entire framework. If you decide to
implement, for example, a performance measurement on every UPDATE statement,
you can implement this in your own EntityImpl class instead of having to wade
through and modify every entity object that you have generated Java classes for.

Chapter 2

[57]

Building framework extension classes
To keep your framework extension classes separate from your application, create
a new project for them: navigate to File | New | Projects | ADF Model Project.
Call your project FrameworkExtension and give it a default package that does not
contain a specific project. If your company Java package names start with com.
company, you could choose something like com.company.adf.framework.

Inside this project, you need to create four classes:

•	 EntityImpl

•	 ViewObjectImpl

•	 ViewRowImpl

•	 ApplicationModuleImpl

The ADF framework also allows you to extend the other four classes (EntityCache,
EntityDefImpl, ViewDefImpl, and ApplicationModuleDefImpl), but this is an
advanced topic and is very rarely needed.

To create your own EntityImpl class, click on your FrameworkExtension project
and navigate to File | New | Java | Class. Give your class the name EntityImpl
(the package should already be filled in with the project default). Extend oracle.
jbo.server.EntityImpl and deselect all the checkboxes as shown in the
following screenshot:

Creating Business Services

[58]

When you click on OK, an empty class opens with content like the following:

package com.adfessentials.adf.framework;

public class EntityImpl extends oracle.jbo.server.EntityImpl {
}

That's all there is to it! The magic of object-oriented programming comes into play
here –– because your class extends the Oracle-supplied class, all of the methods from
oracle.jbo.server.EntityImpl are available even though you do not write any
code. Only in the case where you want to override any of the methods from Oracle's
EntityImpl class would you add code to your framework extension class.

Similarly, create:

•	 A ViewObjectImpl class extending oracle.jbo.server.ViewObjectImpl
•	 A ViewRowImpl class extending oracle.jbo.server.ViewRowImpl
•	 An ApplicationModuleImpl class extending oracle.jbo.server.

ApplicationModuleImpl

For now, we just leave these classes inside the application. In Chapter 5, Building
Enterprise Applications, you will see how to package your framework extension
classes into a reusable ADF Library.

Using framework extension classes
Creating the framework extension classes was the first step; the second step is to
tell JDeveloper to base all new ADF business components on your classes instead
of Oracle's.

To do this, navigate to Tools | Preferences | ADF Business Components | Base
Classes. Provide the full name (including package) for your own EntityImpl,
ViewObjectImpl, ViewRowImpl, and ApplicationModuleImpl as shown as follows:

Chapter 2

[59]

Now you have created your own framework extension classes and have told
JDeveloper to always use these from now on. This ensures that you have one
central place where you can implement general changes that will apply to every
entity object, view object, or application module.

Building entity objects for the example
application
In order to illustrate the process of building business components, we will build the
necessary objects to show customers and their rentals. This will involve the following
objects in the Sakila database:

•	 customer

•	 rental

•	 inventory

•	 film

Creating Business Services

[60]

Preparing to build
Before you start creating entity objects, you need to create a connection to the
database inside your application. This is done like in Chapter 1, My First ADF
Essentials Application, by navigating to File | New | Connections | Database
Connection. Give your connection a name, choose Connection type MySQL, fill
in username (root), password, port (default is 3306), and database name (sakila).
You don't need to select a library again –– JDeveloper has associated the library
you defined in Chapter 1, My First ADF Essentials Application permanently with
MySQL connections.

Another thing you want to do before building the business components is to tell
JDeveloper which Java packages the various components go into. Navigate to
Tools | Preferences and then ADF Business Components | Packages. Fill in this
dialog as shown in the following screenshot:

These settings will place the five different types of business components in different
Java packages for a better overview in the Application Navigator in JDeveloper.

Finally, you need to tell JDeveloper that your RentalModel project has a dependency
on the FrameworkExtension project. This is necessary because you have configured
JDeveloper to base all new business components on your own framework extension
classes. In a real-life enterprise application, you would use an ADF Library for this
purpose; we'll return to this topic in Chapter 5, Building Enterprise Applications.

Right-click on your model project and choose Project Properties. Then choose
the Dependencies node and click on the little pencil icon on the right. Open the
FrameworkExtension node and check the Build Output checkbox as shown in
the following screenshot:

Chapter 2

[61]

Then click on OK a couple of times to close all the dialogs.

Also define a similar dependency on FrameworkExtension in your View project.

Running the wizard
Click on the model project (RentalModel or similar) and start the Business
Components from Tables wizard (File | New | Business Tier | ADF Business
Components | Business Components from Tables). Remember to choose SQL92
as the SQL Platform and choose Java as Data Type Map.

The SQL Platform setting controls the SQL statements that ADF
generates. If you know you'll be using a specific database, you can
select it to allow ADF to build optimized SQL for that platform.
SQL92 is a standard that is supported by all modern databases,
including MySQL.
The Data Type Map setting controls the Java objects used by ADF.
Unless you are using an Oracle database, click on Java.

In step 1 of the wizard, click on Query, choose the customer, film, inventory,
and rental tables on the left, and use the > button to shuttle them to the Selected
box. Then simply click on Finish to create the entity objects (we'll create the other
business components outside of this wizard).

Creating Business Services

[62]

The Application Navigator will show the many objects JDeveloper has created
for you:

In addition to the entity objects in the .entity package, there are also a lot of
associations in the .entity.assoc package.

Examining the result
You can see that there are two types of objects here: the actual entity objects (the
icons with a little gearwheel) and some Domains (with a letter and digits icon):

•	 An ADF domain is a special data type that JDeveloper creates whenever it
is not able to map a database column directly to a Java type.

Chapter 2

[63]

•	 The Enum domain is created for the enumeration column rating in the table
film. This enumeration limits the values in this column to the normal US
film ratings: G, PG, PG-13, R, and NC-17. Because such a Java object does not
exist, a domain is created.

•	 The Mediumint domain is created for the inventory_id column from the
rental table, which is of the MySQL data type MEDIUMINT.

•	 The Set domain is created for the special_features column in the film
table. This column is of the special MySQL SET type (a kind of collection
of binary flags where each bit corresponds to a specific text, allowing the
column to have multiple values).

•	 The Text domain is created for the description column in the film table.
It's simply a longer text than a VARCHAR.

•	 The Year domain is created for the release_year column in the film table.
This column is of the MySQL data type YEAR.

Setting the labels
In the entity objects, you can define the default labels for the user interface. To do
this, choose the Attributes subtab, select an attribute, and choose the UI Hints tab
below the attribute list. Here, you can set the Label attribute. If you don't override it
later, this label will be used in the user interface.

You can also set UI Hints in the view objects –– these override any
hints defined in the entity objects.

Autogenerated values
In the Sakila database, the _id columns (customer_id, rental_id, and so on) are
defined as AUTO_INCREMENT. This means that the database will automatically provide
a value when you create a new record.

By default, ADF recognizes that the _id columns are mandatory in the database, but
does not recognize that a value will be automatically provided. To prevent errors in
your application, you therefore have to uncheck the Mandatory checkbox for all key
attributes. Open each entity object, click on the key attribute (marked with a little key
icon), and uncheck the Mandatory checkbox.

Creating Business Services

[64]

Your screen should look as shown in the following screenshot:

There is a Refresh on Insert setting that instructs ADF to
automatically query the new ID value back from the database.
Unfortunately, this currently only works on Oracle databases
because ADF uses special Oracle SQL syntax (the RETURNING
keyword) to immediately get the newly created primary key value
back from the database.

Cleaning up the data types
Working with custom domains is more complicated than working with standard
Java data types, so in the interest of simplicity, we will remove some attributes and
change others to standard data types.

First, double-click on the rental entity object to open it. Choose the Attributes tab on
the left, right-click on the InventoryId column, and click on Change Type as shown
in the following screenshot:

Chapter 2

[65]

Select the Integer type.

A TINYINT, SMALLINT, MEDIUMINT, and INTEGER can always be
converted into a Java Integer. A BIGINT has to be converted to a
Java Long.

Then open the film entity object and make the following changes:

•	 Change the type for the Description attribute to String
•	 Change the type for the ReleaseYear attribute to Integer
•	 Change the type for the Rating attribute to String
•	 Delete the SpecialFeatures column

We're bypassing the complexities of handling MySQL SET columns by simply
deleting the column. If you have to work with an existing database with SET
columns and you can't change that, be prepared for some complex coding.

We're also taking a shortcut by simply representing the rating ENUM as a String –
this means that our business service doesn't know about the restriction on the data
imposed on the database, as it should.

You can find instructions on how to represent an ENUM as an ADF
domain on Duncan Mill's blog at https://blogs.oracle.com/
groundside/entry/mysql_adf_business_components_enum.

Navigate to File | Save All to save your changes.

Creating Business Services

[66]

Cleaning up the associations
In the current version of JDeveloper, the Business Components from Tables wizard
doesn't really understand MySQL databases very well and generates way too many
associations, as shown in the following screenshot:

If you look at the database model as shown in the following diagram, you will see
that there are actually only three foreign key relationships in the database between
these tables:

Chapter 2

[67]

rental_date DATETIME

rental_id INT(11)

inventory_id MEDIUMINT(8)

customer_id SMALLINT(5)

return_date DATATIME

customer_id SMALLINT(5)

store_id_TINYTINT(3)

first_name VARCHAR(45)

last_name VARCHAR(45)

email VARCHAR(45)

address_id SMALLINT(5)

active TINYINT(5)

create_date DATETIME

last_update TIMESTAMP

fk_rental_customer

fk_rental_inventory

fk_inventory_film

staff_id TINYINT(3)

last_update TIMESTAMP

inventory_id MEDIUMINT(8)

film_id SMALLINT(5)

store_id TINYINT(3)

film_id SMALLINT(5)

title VARCHAR(255)

description TEXT

release_year YEAR

language_id TINYINT(3)

original_language_id TINYINT(3)

rental_duration TINYINT(3)

rental rate DECIMAL(4,2)

length SMALLINT(5)

replacement_cost DECIMAL(5,2)

rating ENUM(...)

special_features SET(...)

last_update TIMESTAMP

last_update TIMESTAMP

filmcustomer

rental inventory

Indexes

Indexes

IndexesIndexes

Deleting superfluous associations
If your model shows this problem, first delete all the superfluous associations:

•	 Delete all FkCustomerAddress* associations (4).
•	 Delete all FkCustomerStore* associations (4).
•	 Delete all FkFilmLanguage* associations (8).
•	 Delete all FkFilmLanguage* associations (4).

Creating Business Services

[68]

•	 Delete FkInventoryFilmAssoc1, FkInventoryFilmAssoc2, and
FkInventoryFilmAssoc3 (3). Leave FkInventoryFilmAssoc.

•	 Delete all FkInventoryStory* associations (4).
•	 Delete FkRentalCustomerAssoc1, FkRentalCustomerAssoc2, and

FkRentalCustomerAssoc3 (3). Leave FkRentalCustomerAssoc.
•	 Delete FkRentalInventoryAssoc1, FkRentalInventoryAssoc2, and

FkRentalInventoryAssoc3 (3). Leave FkRentalInventoryAssoc.
•	 Delete all FkRentalStaff* associations (4).

You should now only have the three associations that match the actual data model.
The application navigator should look as follows:

Fixing wrong associations
Next, you may need to fix the association attributes. Open the FkInventoryFilmAssoc
association, choose the Relationship subtab, and click on the pencil icon next to
Attributes as shown in the following screenshot:

In the Edit Attributes dialog, check the existing mapping. It should show
Cardinality as 0..1 to *, Source Attribute should be Film.FilmId, and
Destination Attribute should be Inventory.FilmId. See the
following screenshot:

Chapter 2

[69]

This means that each Film item may be referenced in one or more Inventory records.
Each Inventory item represents a specific, physical DVD, whereas the Film item
represents the film itself.

It may instead show something like Inventory.InventoryId mapped to Inventory.
FilmId. If your association does not look like the preceding screenshot, select the
mapping in the lower part of the dialog box and click on Remove, and then select the
correct mapping in the top part of the dialog box and click on Add.

Similarly, ensure that:

•	 FkRentalCustomerAssoc maps Customer.CustomerId to Rental.
CustomerId

•	 FkRentalInventoryAssoc maps Inventory.InventoryId to Rental.
InventoryId

All three associations should have Cardinality 0..1 to *.

Navigate to File | Save All to save your changes.

Creating Business Services

[70]

Removing invalid references from entity objects
When you remove associations, JDeveloper sometimes does not clean up the entity
objects correctly. Open all your entity objects (Customer, Film, Inventory, and
Rental) and change to the Source view.

If there are orange markings in the right-hand margin of an entity object source
window as shown in the following screenshot, it indicates a warning:

If you see any of these warnings, click on each orange bar to jump to the
offending code lines (marked with an orange squiggly underline). Delete any
<AccessorAttribute> tags that contain orange underlined warnings (from
<AccessorAttribute until />).

Navigate to File | Save All to save your changes, when done checking all your
entity objects.

Chapter 2

[71]

Building view objects
Entity objects are created one-to-one, matching the database tables you will be using
–– there are no design decisions to make when creating entity objects. View objects,
on the other hand, represent the data you need for a specific use case or screen, so
you need to have a good idea of the application you want to build before you can
create useful view objects.

The storyboard
For the purpose of this book, we will be building a simple customer lookup screen,
followed by a master-detail screen showing customers satisfying the search criteria;
and for each customer, the films they have rented and not returned. It should look
something like the following diagram:

Creating Business Services

[72]

Rough sketches of screens like these are called wireframes, and a
collection of screens with navigation is called a storyboard. The
preceding diagram was created with the specialized wireframing tool
Balsamiq Mockups (http://www.balsamiq.com). It's a good idea
for your organization to decide on a common tool to use for creating
these first UI sketches.

Looking at this storyboard, we can identify the following data requirements:

•	 We'll need a customer block showing first name, last name, and e-mail for
a customer

•	 We'll need a rental block showing title, year, rating, and rental date for all
the customer's rentals that are not yet returned

Building the customer view object
We'll start with the customer block. This one is easy, because it only needs data
from one place: the customer table. Click on your model project (RentalModel
or similar) and navigate to File | New | Business Tier | ADF Business
Components | View Object:

1.	 In step 1 of the wizard, give your view object the name CustomerVO and
leave Data Source as Entity object.

2.	 In step 2, open the .entity node on the left, click on the Customer entity
object, and shuttle it to the right-hand Selected box .

3.	 In step 3, shuttle the attributes FirstName, LastName, and Email to the right-
hand Selected box. You'll notice that the primary key attribute (CustomerId)
is automatically added as well.

4.	 In step 4, you don't need to change anything.
5.	 In step 5, provide an ORDER BY clause, for example, last_name, first_name.
6.	 In step 6, you can click on Finish. There is nothing to change in the

remaining steps of the wizard.

By default, a view object will show records –– in this case, our CustomerVO will show
all customers. However, we want to be able to limit the data to those that match
the search criteria in the first screen. For this purpose, we define a view criteria and
some bind variables.

Chapter 2

[73]

You can think of view criteria as predefined filters that you can apply to
a view object. A view object can potentially have many different view
criteria, allowing you to filter data in various ways. If you do not apply
any criteria, you will see the unfiltered view object with all records.

Double-click on your CustomerVO view object and choose the Query tab. Then
scroll down and click on the green plus sign next to View Criteria. The Create
View Criteria dialog opens.

You can leave the default criteria name. Click on Add Item to add a criteria line,
choose the CustomerId attribute, and set Operator to Equals. Change the value
for Operand to Bind Variable and click on the green plus sign to create a new bind
variable. The Bind Variable dialog appears as shown in the following screenshot:

A bind variable is a placeholder for variable data that you need to use
in your SQL statement. In this case, we want to be able to compare
the customer_id in the database to a value passed in to the query
through the bind variable.

Creating Business Services

[74]

Always use bind variables when you need variable data in your query –– never just
use string concatenation to add variables to your SQL. Adding only a string might
allow an attacker to place extra SQL statements that you do not want executed. This
is called SQL injection (see http://en.wikipedia.org/wiki/SQL_injection) and
is a very common vulnerability in database applications. Just use bind variables and
avoid this.

Give your bind variable a name like bindCustomerId and click on OK (the rest of
the default settings in this dialog are fine). Your dialog should now look as shown in
the following screenshot:

Add another element with the Conjunction dropdown set as OR, the Attribute
dropdown set as FirstName, the Operator dropdown set as Contains, and
the Operand dropdown set as Bind Variable. Add a new bind variable called
bindFirstName.

Similarly, add lines with the Conjunction dropdown set as OR, for the
attributes LastName and Email, adding new bind variables called
bindLastName and bindEmail.

Chapter 2

[75]

With all four criteria lines defined, the dialog should look as follows:

You can see the SQL that will be used at runtime in the right-hand box –– JDeveloper
automatically handles null values and case conversion.

Building the rental view object
If you compare the storyboard with the database, you will find that the film title,
year, and rating all come from the film table, but the rental date comes from the
rental table. Additionally, you need to go through the inventory table in order to
connect a rental record to a film record.

Fortunately, ADF Business Components make it easy to collect data from several
entity objects (each corresponding to a specific table) and combine it all in one view
object. Select your model project and then navigate to File | New | Business Tier |
ADF Business Components | View Object:

1.	 In step 1 of the wizard, give your view object the name RentalVO and leave
Data Source as Entity object.

Creating Business Services

[76]

2.	 In step 2, open the .entity node on the left, click on the Rental entity
object, and shuttle it to the right-hand Selected box as shown in the
following screenshot:

Note that the first view object you select has the Updatable checkbox
selected by default. If you use several entity objects in a view object,
normally only one of them can be updatable.
Then, select the Inventory entity object and shuttle it to the right. JDeveloper
automatically detects that there is an association between Rental and
Inventory and marks the Inventory entity object as a Reference object
as shown in the following screenshot:

Chapter 2

[77]

A Reference object is normally not updatable –– it just contains additional
information that we wish to display to the user. This is useful if your main
(updatable) entity object contains key values that point to lookup tables and
you want to retrieve the description to display to the user.
Verify the association that JDeveloper has chosen. In this case, the right
association is FkRentalInventoryAssoc.Inventory.
In a similar manner, select the Film entity object and shuttle it to the right,
and verify that the association used is FkInventoryFilmAssoc.Film.

3.	 In step 3, shuttle the attributes you need to the Selected box on the right-hand
side. To be able to create new rental records, include all the entities from the
Rental entity object (select the Rental entity object and click on > to include all
attributes). Looking at the storyboard, you can see that we additionally need
Title, ReleaseYear, and Rating from the Film entity object.
You don't need anything from the Inventory entity object –– it's only
necessary in order to get from Film to Rental. You'll notice that the primary
key attribute from both Film and Rental is automatically added as well.

4.	 In step 4, you don't need to change anything.
5.	 In step 5, provide an ORDER BY clause, for example, rental_date.
6.	 In step 6, you can click on Finish –– there is nothing to change in the

remaining steps of the wizard.

Now, remember that we only want to show the open rentals: DVDs that have not yet
been returned. In order to limit our view object to show only these, we add a query
criteria like we did for the Customer view object.

The Query tab in the view object (where we add view criteria) also
allows us to edit the query itself and add a hardwired WHERE clause
to the view object. However, such a limitation would always apply,
limiting the usefulness of our view object.

Creating Business Services

[78]

Double-click on the RentalVO view object and create a new view criteria as explained
in the preceding section. Call it UnreturnedCriteria and add a line saying the
ReturnDate attribute must be blank. The Query Criteria dialog should look like the
following screenshot:

Creating a view link
Now we have the two view objects that contain the necessary data, but we still
need to connect them together using a View Link. Navigate to File | New |
Business Tier | ADF Business Components | View Link to start the Create
View Link wizard:

1.	 In step 1 of the wizard, give the view link a meaningful name (for example,
CustomerRentalLink).

2.	 In step 2, leave the Cardinality dropdown at 0..1 to *.

This means that each source record (customer) may correspond to
one or more target records (rentals).

Chapter 2

[79]

Expand the CustomerVO view object node in the left-hand (source) box and select
CustomerId. Expand the RentalVO view object node in the right-hand (destination)
box and select the CustomerId here as well. Then click on Add to add an attribute to
the link. Your screen should look as shown in the following screenshot:

3.	 In step 3, you can click on Finish –– there is nothing to change in the
remaining steps of the wizard.

Application module
Now we have two view objects with all the data we need and we have defined the
connection between them. The final business component we need to create is an
Application Module. Navigate to File | New | Business Tier | ADF Business
Components | Application Module to start the Create Application Module wizard:

1.	 In step 1 of the wizard, give the application module a meaningful name (for
example, RentalService).

Creating Business Services

[80]

2.	 In step 2, expand the .view node to see your two view objects. First click on
CustomerVO on the left. In the New View Instance field under the list of
available view objects, change the name to CustomerSearchResult as shown
in the following screenshot:

°° Click on the > button to create a view object instance in the
right-hand box.

°° Then expand the CustomerVO node to the left to see the node
RentalVO via CustomerRentalLink. Select this node and give
it the name RentalUnreturned in the New View Instance
field, and then shuttle it to the right. It should appear under the
CustomerSearchResult view object instance in the right-hand
side of the dialog.

Note that there is a difference between selecting RentalVO via
CustomerRentalLink and just selecting RentalVO.
If you base a screen on the RentalVO view object without the view
link, the screen would always show all rentals across all customers.
If you base a screen on the RentalVO view object connected via the
view link, it will show only the detail (rental) data that matches the
master (customer) record.

°° Then click on the CustomerSearchResult view object instance and
click on the Edit button. In the Edit View Instance dialog, move the
view criteria from the Available box to the Selected box as shown in
the following screenshot:

Chapter 2

[81]

°° This applies the view criteria to the specific view object instance in
the application module so that when you base a screen on this view
object instance, the CustomerVOCriteria filter is applied and only
the records matching the filter are shown.

You can have many instances of one view object in the same
application module with various combinations of view criteria.

°° Similarly, edit the RentalUnreturned view object instance and click
on UnreturnedCriteria.

°° Finally, choose the RentalVO view object that is not connected via the
view link, give the view instance the name RentalVO, and shuttle it to
the right. Your data model window should now look as shown in the
following screenshot:

3.	 In step 3, you can click on Finish –– there is nothing to change in the
remaining steps of the wizard.

Creating Business Services

[82]

Testing business components
This completes our business service layer. So far, we have created:

•	 Entity objects
•	 Associations
•	 View objects with view criteria
•	 A view link
•	 An application module

In many development teams, tasks are split between developers with some building
business services and some building the user interface. Naturally, the developers
building business services need a way to test their work without having to wait
for the UI developers to finish their work. JDeveloper offers this in the form of the
Business Components Tester.

To run this tester, simply right-click on the application module and select Run.
This will start up the built-in tester application that will show the view object
instances in your application module, as shown in the following screenshot:

Chapter 2

[83]

You will be prompted for bind variable values when you activate a view object that
needs them.

You can navigate through data, change data, and even create or delete records
through the business component tester application.

If you want to create a rental record, you can leave the
RentalId column blank, because this value will be
provided by the database.

Summary
We have built our own foundation classes for our business components and have
created the business services we need for our simple example application. This
includes entity objects and associations, view objects, view criteria, a view link, and
an application module exposing our business service to the rest of the application. In
the next chapter, we will be building the frontend of our application based on these
business services.

Creating Task Flows
and Pages

In Chapter 2, Creating Business Services, we built the first layer of the application: the
business service layer. In this chapter, we will build the actual user interface that the
user will interact with. This part of the application consists of the View, Controller,
and Model layers, as shown in the following diagram:

JSF pages

ADF Task Flows

Data Bindings

Business Services

Database

View layer

Controller layer

Model layer

Business Services layer

Database layer

As you may remember from Chapter 1, My First ADF Essentials Application:

•	 The View layer consists of the pages that are displayed to your users
(JSF pages or JSF page fragments)

•	 The Controller layer consists of ADF Task Flows that control the flow
between the elements of the view layer

•	 The Model layer consists of the Data Controls that connect the
view/controller layers to the underlying business services

Creating Task Flows and Pages

[86]

Building task flows
A web application consists of a number of pages that must be displayed to the user
in a specific sequence. This sequence is not fixed—the user might make a decision
as to which page they want to see next, or the application might decide to show a
specific page with a warning or a request for more information.

If we did not have a controller layer, each page would have to contain both the
actual components on the page as well as the logic to decide where to go next.
This intermingling of functionality quickly becomes hard to maintain and is not
considered a good programming practice.

That is why we have a controller layer to control the flow through the application.
The controller layer manages the logic of what happens in which order so that
the individual pages or code elements do not have to worry about this part of
the application.

Bounded and unbounded task flows
Every application has one unbounded task flow—we saw that in the simple
demo application in Chapter 1, My First ADF Essentials Application. In addition,
an application may have any number of bounded task flows.

The unbounded task flow is the outer shell of the application, and every page you
include in this task flow can be accessed directly through its own URL. If you intend
for your application to have multiple entry points, you need to create one page for
each entry point.

Most applications, however, mainly make use of bounded task flows. As the name
implies, they have the benefit of a well-defined boundary: there is exactly one entry
point where a bounded task flow starts when it is called. It can have one or more
exit points, potentially returning a value to the calling task flow to allow the caller
to make a decision based on what happened in the called task flow. A task flow is
designed visually and might look like this:

Chapter 3

[87]

Pages and fragments
Your bounded task flows can contain either pages or page fragments.

As the name implies, a page is complete and takes up the entire browser window.
An application with pages feels like a classic website. Whenever you click on a
button or link on the page, the whole screen is redrawn, showing a new page.

A page fragment, on the other hand, is intended to take up only part of a page.
This means that a bounded task flow using fragments must live within the context
of a page, as shown in the following diagram:

Region 1 Region 2
Page

Bounded task flow
with page fragments

Bounded task flow
with page fragments

As the diagram shows, a page can contain several regions, each displaying one
bounded task flow with page fragments.

Creating Task Flows and Pages

[88]

This allows you to build a web application that feels more like a desktop application.
If the user clicks on a button or a link in the region to the left, the bounded task flow
might advance to another page fragment. However, only the left-hand side of the
page is redrawn—the page itself is not reloaded, and the region on the right is
also untouched.

The technical term for this behavior is called partial page
rendering—only the part of the page that needs to be refreshed
is actually changed.

Task flow templates
We saw in Chapter 2, Creating Business Services that it was a good idea to build
framework extension classes and base our application on these. Even if we don't
yet know what we want to place in these classes, it takes only a little time at the
beginning to avoid much wasted time later in the project.

Similar to the framework extension classes, we build task flow templates before we
start building actual task flows. You can leave them blank for now; they are simply
placeholders that we create just in case.

To build a task flow template, select your RentalView project and choose File | New,
JSF/Facelets, ADF Task Flow Template. Give your template a name like rental-
task-flow-template and make sure Create with Page Fragments is checked as
shown in the following screenshot:

Chapter 3

[89]

Notice the Base on Template checkbox and selection. In ADF 11gR2, you can create
a hierarchy of task flow templates. Keep this in mind when you start building large
enterprise applications.

When you click on OK, the task flow template opens in the work area in JDeveloper
with the text Drop content onto this blank diagram… in the center. Since we won't
be putting any content into our task flow template at this time, you can simply close
this diagram.

Example application
In order to demonstrate the use of task flows, we will expand our simple rental
application a little. In Chapter 2, Creating Business Services, you saw a storyboard
showing two screens for finding a customer and his or her pending rentals. In
addition to this, we will create another task flow that just contains one page—this
one is for registering a new rental.

Building the Rent DVD task flow
We'll start with the very simple Rent DVD task flow. Choose File | New | JSF/
Facelets | ADF Task Flow. Give your task flow a name like rent-dvd-flow and
check the Base on Template checkbox. When you select this checkbox, the drop-
down list becomes active. Because we have only one task flow template in the
application and we have not imported any libraries, the select list contains only one
template. Leave the checkbox Update the Task Flow when the Template Changes
checked to make the task flow reference the template (so that any later changes to the
template will take effect in the task flow).

If you don't check the Update… checkbox, the template is simply
copied into the project and any later changes to the template will not
affect the task flow.

Creating Task Flows and Pages

[90]

When you click on OK, the empty task flow opens as shown in the
following screenshot:

Notice the tabs Diagram, Overview, and Source at the bottom of the window.
These allow you to view the task flow in various ways:

•	 The Diagram view allows you to edit your task flow visually by dragging
components in from the Component Palette to the left

•	 The Overview view allows you to change various other settings for the task
flow through dialog boxes and select lists

•	 The Source view shows the raw XML file that JDeveloper is actually storing

It doesn't matter which view you use to make a change—these views are just
different representations of the same task flow definition file.

In this simple case, we'll just drag a view object onto the task flow from the
Component Palette. Give it a name like rentDvd as shown in the following screenshot:

Chapter 3

[91]

Notice two things about this view:

•	 The yellow warning icon indicates that there is something wrong with this
view—in this case, there is no actual page fragment behind the view yet.
So far, we have only told JDeveloper that we have an intention to create a
page fragment—we'll put content into it later in this chapter. Also, note that
JDeveloper tries to show you that the view is not yet complete by showing
the lower half of the symbol with a dashed line—a completed view looks
like this:

•	 The view has a green halo behind it. This indicates that this element is the
first one in the flow—this is called the default activity. You can have many
different components in a task flow, but only one can be the default activity.
This is central to the concept of a bounded task flow: it has one well-defined
entry point. To change this, right-click on an activity and choose the Mark
Activity or Unmark Activity menus.

All elements can be the default activity—not just views.

Creating Task Flows and Pages

[92]

Building the Return DVD task flow
You probably remember from the storyboard in Chapter 2, Creating Business Services
that the Return DVD storyboard showed two pages, so our task flow will contain
two views representing these.

Create a new task flow called something like return-dvd-flow with the same
settings as the previous task flow. When the empty task flow opens, drag two views
onto the canvas, giving them the names findCustomer and showRentals. Make sure
findCustomer is the default activity (with the green halo) as shown as follows:

It is easy to determine which views you need in a task flow, because these are
explicitly part of your storyboard. It takes a bit of ADF knowledge to figure out what
other elements you might need. In this case, we use the first view (findCustomer) to
gather query values for the customer, and the second view (showRentals) to show
the result. In between, we need to actually execute a database query using the values
from the first screen. Fortunately, JDeveloper makes it really easy to include code in
a task flow in the form of method call activities.

When we created our business components in Chapter 2, Creating Business Services,
the ADF framework automatically provided us with a long list of standard
operations that you can see in the Data Controls panel in the Application Navigator
as shown in the following screenshot:

Chapter 3

[93]

Notice that some of these operations belong to the view object instances in the
application module (Create, CreateInsert, Create with parameters, and so on)
and some belong to the application module itself (Commit and Rollback, at the
bottom). The operations are marked with little gearwheel icons to show that they
are operations, not data. Operations can be dragged directly onto task flows—when
you drop them, JDeveloper will automatically create a corresponding method
call activity.

Creating Task Flows and Pages

[94]

In this case, we need an operation that executes the view object, applying any query
criteria. This operation is called ExecuteWithParams, and it executes the necessary
SQL to fill the view object with all the records that match the parameters.

The built-in view operations are documented in the Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application
Development Framework manual. To find the right place, you can
place the cursor on a view object instance in the Data Controls palette
and press F1 to call up, JDeveloper help. You should see the help topic
Application Navigator – Data Controls Panel, and at the bottom of
this is a link to the relevant place in the Fusion Developer's Guide.

Find the ExecuteWithParams operation and drop it between the two views. An Edit
Action Binding dialog pops up prompting you to enter values for the bind variables
used in the view criteria as shown in the following screenshot:

Chapter 3

[95]

Fill in the Parameters section of this dialog as follows:

Name Value

bindCustomerId #{pageFlowScope.searchCustomerId}

bindEmail #{pageFlowScope.searchEmail}

bindFirstName #{pageFlowScope.searchFirstName}

bindLastName #{pageFlowScope.searchLastName}

Be very careful to make sure that you write the values exactly like this. The hash sign
and the curly brackets identify the value as an Expression Language expression, so
they must be written exactly.

The text pageFlowScope (notice the use of uppercase F and S) defines a memory
scope—in this case, we are referring to variables that are available throughout the life
of the task flow.

Memory scopes
When you use variables and managed beans (more on these in Chapter
4, Adding Business Logic), you define their scope. In this case, we use
PageFlow scope—refer to the following section on Memory scopes for
more information.

The last part (searchLastName, and so on) is the only part that you can choose
freely. This is just the name of a variable—Expression Language does not require you
to define variables, so you can use any name you like. However, you must of course
remember the variable names (or write them down) because we have to assign
values to them when we start building the pages.

When you click on OK, you will see an ExecuteWithParams method call activity
added to your task flow.

Creating Task Flows and Pages

[96]

The last thing you need to do is to define the navigation between the elements
in your task flow. This is done with control flow cases. You find these in the
Component Palette—obviously, these are the arrow symbols:

1.	 In your Return DVD task flow, click on Control Flow Case in the
Component Palette, click on the findCustomer view, then move the mouse
cursor to the ExecuteWithParams operation and click on it. These two
elements are now connected, and you can provide a name for the control
flow. Call this one something like executeQuery.

2.	 Connect the ExecuteWithParams operation with the showRentals view
in a similar way and call this connection something like showResult.

3.	 Select the ExecuteWithParams operation, and in the Property Palette, set
the value of the Fixed Outcome property to showResult.

4.	 Connect showRentals back to findCustomer with a connection
called newSearch.

Your task flow should now look something like this:

If you did not change the Fixed Outcome property of the ExecuteWithParams
operation, you will see a warning icon next to your control flow case. This is
because its name doesn't match with the outcome from the element it's pointing
away from. The default outcome of the ExecuteWithParams operation is called
ExecuteWithParams, so if you change the control flow case to something else (like
we did previously), you also need to change the Fixed Outcome property to match.
The drop-down value for this property will only show the control flows leading
away from the operation.

Chapter 3

[97]

That is all we need to do right now to define the controller layer of our simple DVD
rental application.

Memory scopes
Variables and managed beans have a scope that determines for how long a variable
or a bean lives. It is good practice to use as short a scope as possible—this allows
ADF to free up memory as soon as possible and avoids mysterious bugs caused by
old values that are not refreshed.

Because ADF is based on JavaServer Faces (JSF), the five standard scopes of JSF are
available. In addition, ADF adds three new scopes. When starting out with ADF
development, you can get by with the following scopes:

•	 The BackingBean scope: This is a short scope; objects in this scope only live
for one request from the client to the server. Use this scope for backing beans
(described in Chapter 4, Adding Business Logic) that just need to perform an
operation and do not need to store data.

If you know JSF, you might be familiar with the Request scope. In an
ADF application where several fragments can coexist on a page, you
should use the BackingBean scope where you use the Request scope in a
plain JSF application.

•	 The PageFlow scope: This is an intermediate scope; objects in this scope live
for the duration of a bounded task flow, across individual pages. Use this
scope for beans and variables that need to store data used on several pages in
a page flow.

•	 The Session scope: This is a long scope; objects in this scope live for as long
as the user has a session with the server (typically until the session times out
or the user closes the browser). This scope is shared across all instances of
the application.

Be careful with the Session scope! If your user opens the
application multiple times in separate browser tabs, objects
in the Session scope might be shared across tabs (depending
on browser make, version, and settings). A user will typically
consider the application instances in the tabs to be separate, so
will consider it a bug if the search result in one tab suddenly
shows up in another tab.

Creating Task Flows and Pages

[98]

Variables and beans should have the shortest scope that still fulfills the application
requirements. If you are in doubt, PageFlow scope is often a good choice. As
you become more proficient with ADF, you'll want to read the description of
memory scopes in section 5.6 in the Oracle Fusion Middleware Web User Interface
Developer's Guide for Oracle Application Development Framework. At the time of
writing, this document (for JDeveloper 11.1.2.4) could be found at http://docs.
oracle.com/cd/E37975_01/web.111240/e16181/af_lifecycle.htm#CHDGGGBI.

Other elements of task flows
In addition to the elements we have used previously, you will find some other
components in the Component Palette for a task flow. The most commonly used are:

•	 Router: The router components are, used to make decisions in the flow. You
create a number of control flows leading away from the router, and based
on the expressions you define, the router will select one of these. A router
always has a default outcome and can have any number of additional cases,
each with its own expression. You must define control flows matching all the
possible outcomes of the router component.

Make sure your cases do not overlap, for example, do not have both
greater than 5 and greater than 10; you will get weird results.

•	 Task flow call: The task flow call components are used to call a bounded task
flow. You normally don't use this from the Component Palette, but rather
you drag a task flow onto the canvas and JDeveloper creates a task flow call
for you. Similar to a router component, a task flow call can have multiple
outcomes, and ADF will pick the navigation case that matches the outcome.

•	 Task Flow Return: The task flow return components are used to indicate the
end of processing in a bounded task flow and to define the outcome.

The task flow call and task flow return components work together to let a calling
task flow take decisions based on what happened in a called task flow. For example,
your new-rental-flow might call a customer-create-flow. The customer-
create-flow could have two different task flow returns based on whether a new
customer was created or not. These could have the outcomes CustomerCreated and
CustomerCreateCancel, and the calling task flow could use a router component
after the task flow call to handle the two different cases by showing different pages
to the user.

Chapter 3

[99]

Building pages
With the task flows defined, we are done with the controller layer in our model-
view-controller architecture. The next layer we will work on is the view layer.

Using templates
Just like you created a task flow template before you built the first task flow, you
should create templates for your pages and page fragments. Page and page fragment
templates are always referenced (never copied), so any change you make to a page
template will affect all pages based on the template. For now, we will build the
templates in the RentalView project—in Chapter 5, Building Enterprise Applications,
we'll see how templates can be kept in their own library in an enterprise application.

Your application will have both a page template and a page fragment template as
shown in the following diagram:

Page Template

Page fragment

Page

Page Fragment Template

The page is based on the page template and contains task flows with page fragments.
Each fragment is based on a separate page fragment template.

Creating Task Flows and Pages

[100]

Facet definitions
In JSF terminology, a facet is a place where you can place your components.
A page can have multiple facets for different parts of the page. When you create
a page template, you first define the facet names and then place a FacetRef
component in the place in your layout where you want the template user to
be able to place content.

Page fragment template
Your page fragment template will typically be empty or almost empty, because page
fragments are used inside pages. This means that the common visual elements like
headers, logos, and so on, should not be part of your page fragment template. We are
creating a page fragment template in order to have a place to put common elements
in case we later find out that we need them.

To create it, select the RentalView project and choose File | New | Web Tier
| JSF/Facelets and then ADF Page Template. The Create ADF Page Template
dialog opens. Choose Facelets as the document type and set the File Name to
pageFragmentTemplate.jsf. The Page Template Name should automatically
update to match the file name without the extension (pageFragmentTemplate).

Because there is no need for your user to access the template directly, you should
add \WEB-INF to the end of the directory.

Files placed in the public_html directory can be accessed directly,
so that is where your pages, images, and stylesheets go. Files placed in
public_html\WEB-INF are not directly accessible, so that is where
your page flow definitions and templates should go.

Choose Use a Quick Start Layout and leave the default selection of One Column
(Stretched). This is the simplest possible layout—we'll see some of the other
possibilities when we build the page template.

Chapter 3

[101]

Use the green plus to define a facet with the name fragmentContent. The dialog box
should now look like this:

When you click on OK, your page template opens in Design view. In the Component
Palette, open the Layout node, scroll down to the Core Structure heading, and drag
a Facet Definition onto the center of the page template. You are prompted to select a
facet name—since you only defined one, the drop-down list only has one value. Select
your content facet and click on OK.

Creating Task Flows and Pages

[102]

In the Structure panel (by default placed in the bottom left), you can see the structure
of your page template as shown as follows:

If the Structure Panel is not shown, you can choose View | Structure to display it.
If you can't find it, set Window | Reset Windows to Factory Settings to display the
Structure Panel in the bottom left of the JDeveloper window.

You can see that the quick start layout has added an af:panelStretchLayout
component to the template, and your af:facetRef component is placed in the
center facet of the PanelStretchLayout. Because a PanelStretchLayout will
stretch whatever is in the center facet to fill the entire available area, this is a good
choice for a page fragment template.

Page template
The page template is used for the application pages your user will interact with,
so this will contain common visual elements like headers, logos, and so on.

The process to create a page template is very similar to the process of creating a page
fragment template. First, select the RentalView project and choose File | New | Web
Tier | JSF/Facelets and then ADF Page Template. In the Create ADF Page Template
dialog, choose Facelets as the document type and give your page fragment template
a file name like pageTemplate.jsf. Again, add \WEB-INF to the end of the directory.

Choose Use a Quick Start Layout and click on the Browse button to see some of
the quick start layout options available as shown in the following screenshot:

Chapter 3

[103]

You first choose a category, then a type, and then a layout. Refer to the legend in the
bottom-right corner for an explanation of the symbols.

As you learn more about JSF page layout, you will be able to produce these layouts by
combining the relevant ADF layout components—the quick start layouts are intended
to give you a head start when you first start developing Oracle ADF applications. For
the sample application, choose a simple one-column layout, like this:

Creating Task Flows and Pages

[104]

Like you did for the page fragment template, use the green plus to define a facet, this
time with the name pageContent as shown in the following screenshot:

If you choose a more advanced layout, you might want several facets and several
corresponding FacetRef components, but for the simple application in this book,
one facet is enough.

When you click on OK, your page template opens in the Design view. In the
Component Palette, open the Layout node, scroll down to the Core Structure
heading, and drag a Facet Definition onto the center of the page template. Make
sure you drop it on the center of the page canvas (inside the center facet of the
PanelStretchLayout) and not in the top facet.

You can also drag components onto the Structure panel at the
bottom-left—this is just another way of achieving the same goal. In
complicated layouts, it can be easier to place components inside the
right container by using the Structure panel.

Chapter 3

[105]

Select the facet name when prompted.

To illustrate how to place content on the template, drag an Output Text component
from the Component Palette (found in the Text and Selection section) and drop it
onto the top part of the page template. Use the Property Inspector to set the Value to
DVD Rental App.

Internationalization
In this example, we are hard-wiring the text into the template. If there
is even the slightest chance that your application will ever need to
be translated, you should instead place all your user interface strings
in resource bundles. Refer to the Appendix in Oracle ADF Enterprise
Application Development—Made Simple for more information about
internationalization in Oracle ADF.

Next, open the Style section to set the color, font size, and font weight as shown in
the following screenshot:

Creating Task Flows and Pages

[106]

You should see your choices reflected in the page template like this:

Example application
Now that we have templates for our page fragments and pages, it is time to start
building the application itself.

Building the customer search page
To build the customer search screen, we refer back to the wireframe:

Starting from the return-dvd-flow task flow, double-click on the findCustomer
view to create the ADF page fragment. You can leave the name and other settings,
but select to use the pageFragmentTemplate as shown in the following screenshot:

Chapter 3

[107]

Because we need to place multiple input fields on the screen, it's a good idea to start
with a panel form layout. Choose this from the Component Palette (from the Layout
section). Inside the panel form layout, place four Input Text components (from the
Text and Selection section). Use the Property Palette to provide labels.

We are again hard-wiring text in—if you might need to translate
the user interface later, use resource bundles as described earlier in
this chapter.

Also, set the Value property to the correct variable (#{pageFlowScope.
searchCustomerId}, #{pageFlowScope.searchEmail}, #{pageFlowScope.
searchFirstName}, or #{pageFlowScope.searchLastName}—remember, we
decided on these names when we dropped the ExecuteWithParams element
onto the task flow). Your screen should look like this:

Now you have some fields for the user to enter query criteria. We have set the Value
properties, in effect defining pageFlowScope variables. Later in the flow, we will
assign the values of these variables to bind variables in a query in order to limit the
records shown on a later screen.

Creating Task Flows and Pages

[108]

After the input fields, drop a Button component (from the General Controls section)
onto the footer facet of the panel form layout (marked with the text footer), as shown
in the following screenshot:

Use the Property Inspector to set the button Text property to Customer lookup and
choose executeQuery as the Action as shown in the following screenshot:

The possibilities in the drop-down for the Action property are the control flows you
defined pointing away from the page fragment in the task flow.

Chapter 3

[109]

Building the Return DVD page
The Return DVD page must contain both a master section showing customer
information and a detail table showing all the non-returned DVDs for that customer.
However, JDeveloper can automatically create all the necessary components for us at
the same time as we define the data binding. So for now, simply double-click on the
showRentals view in the task flow, ensure that pageFragmentTemplate is selected,
and click on OK.

This creates an empty page for us to use later in this chapter when we finalize the
application by building the model layer.

An alternative – ADF query panel
In this application, we are explicitly using a search page, a query operation, and a
results page. However, ADF also offers the possibility to create a query panel and a
result table on the same page. If you want to try out this component, you can create
an empty page and drag the CustomerVOCriteria node (under the Named Criteria
heading) onto a page and select Query | ADF Query Panel with Table as shown in
the following screenshot:

Building the Rent DVD page
The page to rent a DVD is so simple that we did not even create a wireframe for
it. The use case is that a store employee will hold a specific DVD in their hand that
the customer has selected and can read the inventory_id directly from a label on
the DVD cover. Similarly, the customer will have a membership card containing
customer_id. So, this simple screen just needs two input fields for these numbers
and a button to register the rental.

Creating Task Flows and Pages

[110]

For now, we will just create the user interface—the logic to actually insert a rental
record in the database will be added in Chapter 4, Adding Business Logic.

Open the rent-dvd-flow task flow and double-click on the rentDvd view. In the
Create ADF Page Fragment dialog, ensure that pageFragmentTemplate is selected
and click on OK.

This page will contain fields and a button just like the findCustomer page fragment,
so it is built in a similar manner:

1.	 Add PanelFormLayout.
2.	 Add two fields to the panel form layout and set the labels.
3.	 Add a button to the footer facet of the panel form layout and set the label.

Your screen should look like this:

Building a master page
We now have two task flows using page fragments, but we cannot directly run
task flows with page fragments. In order to run the application, we need to create
a master page. In this sample application, we will just place the two task flows side
by side on a page, but you could also use a menu and a dynamic region to swap
between the rent and return flows.

To create the page, choose File | New | Web Tier | JSF/Facelets | Page. Give your
page the name simpleDvdStore.jsf, select Facelets as Document Type, and select
the pageTemplate we created earlier in the chapter. When you click on OK, you
should see your page showing the header from the page template. In the Structure
panel, you can see that the page contains a page template, and within the template,
you can see the pageContent facet you defined, like this:

Chapter 3

[111]

Drag a Panel Splitter (from the Layout section) onto the content facet in the
Structure panel. This component splits an area into two separate parts (vertically
or horizontally), dividing them with a movable splitter bar. In the Design view,
you'll see a small button with a triangle, indicating the splitter bar in the panel
splitter component. Drag the rent-dvd-flow task flow onto the left-hand side of the
simpleDvdStore page and drop it as a region as shown in the following screenshot:

Move the splitter a bit to the right so you can see the full length of the fields. The
first page from the flow is shown on the page, but it is grayed out to indicate that
the components are not actually on the page, but rather come from a task flow.

Creating Task Flows and Pages

[112]

Next, drop the return-dvd-flow task flow on to the right-hand side of the screen as
a region. Your screen should now look like this:

Note that both sides of the splitter should show a grayed-out version of the first page
in each task flow. If you are reading this book in paper format, the above illustration
might not exactly illustrate this grayed-out text.

Running the page
We are finally able to run our application! As discussed in Chapter 1, My First ADF
Essentials Application, running your application is much faster in the WebLogic
application server built into JDeveloper, so we'll do that here. Right-click on the
simpleDvdStore page and choose Run. In the Log window at the bottom of the
JDeveloper window, you will see the WebLogic server starting, and after a while,
you should see your page:

Chapter 3

[113]

To run your application in GlassFish, you need to perform the tasks mentioned
at the end of Chapter 1, My First ADF Essentials Application, configure datasource
deployment, fix bc4j.xcfg, set the platform, and deploy.

Using data bindings
The final layer in the ADF model-view-controller architecture is the model layer. In
ADF, the model layer is implemented in the ADF bindings that connect the view
and controller layer to the underlying business services. The business services are
presented as data controls—if you define ADF Business Components in JDeveloper,
you automatically get a data control for each application module. However, it is also
possible to manually create data controls based on Plain Old Java Objects (POJOs),
web services, or other sources.

In your first Oracle ADF applications, you will probably not be interacting much
with the binding layer. This is not necessary, because JDeveloper offers excellent
support for "automagically" creating components from data controls, including
establishing all the necessary bindings. Let's see this JDeveloper magic in action.

Showing a customer on a page
Now is the time to return to the showRentals page fragment that we skipped in the
previous section. Open the page fragment from the Application Navigator or from
the return-dvd-flow task flow.

Next, open the Data Controls panel in the Application Navigator and expand
the RentalServiceDataControl node to see CustomerSearchResult. Drag the
CustomerSearchResult element onto the page fragment and drop it as an ADF
form as shown in the following screenshot:

Creating Task Flows and Pages

[114]

In the Edit Form Fields dialog, check the Include Navigation Controls checkbox
at the bottom of the dialog and click on OK. You will see JDeveloper automatically
adding fields and buttons to the page. The Structure panel gives you an overview of
what was just created for you:

There is an af:panelFormLayout component and some fields, just like we created
ourselves earlier, as well as some buttons in the footer facet of the panel form layout
arranged in a horizontal layout within an af:panelGroupLayout container.

If you examine the fields, you will see that their Label property is set to something
that starts with #{bindings—for example, the CustomerId field has the Label
#{bindings.CustomerId.hints.label}. The Value property is set similarly—for
example, the CustomerId field has the Value #{bindings.CustomerId.inputValue}.

What does this mean? Well, to get an explanation, you have to click on the Bindings
tab at the bottom of the showRentals.jsff window. You will see a graphical
representation of the binding layer like this:

Chapter 3

[115]

The use of the binding layer is an intermediate ADF topic that you will learn more
about as you gain experience with ADF. For now, you can see that JDeveloper has
created attributeValues bindings that point to an iterator that again points to the
data control. This allows the user interface to access the UI Hint from the entity
object or view object to use as a default label and to access the actual attribute value
to display in the field.

An iterator is a pointer to the current row in the dataset that the
view object represents.

Similarly, there are action bindings that point to the same iterator.

If you go back to the Design view of the page and click on one of the buttons
(for example, the First button), you can see in the Property Inspector that the
ActionListener property also points to the binding layer. For example, the Action
Listener for the First button is set to #{bindings.First.execute}, which means
that it will execute the action binding called First. This action binding connects to
the Customer1Iterator where it will execute the First operation, jumping to the
first record in the record set.

These actions move the iterator to point to the first record in the
dataset of the view. The other operations move the iterator as their
name implies.

Creating Task Flows and Pages

[116]

There is no need for you to change anything - you just need to save the showRentals
page fragment. JDeveloper has worked its magic, and your application is
actually ready to run without you writing a single line of code. Right-click on
simpleDvdStore.jsf in the Application Navigator and choose Run to start your
application. Your application should look like this:

The default field labels come from the data binding (from the entity object or view
object), but you can override the defaults by explicitly setting the Label property.

On the right-hand side, where the return-dvd-flow task flow lives within its
region, you can type, for example, BA into the Last Name field and click on the
Customer Lookup button. Only the right-hand side of the page changes to show
you the second page fragment in the task flow—that's the one where we just
dropped an ADF form based on a customer. You can click on the buttons to
navigate through all the customers where the last name contains BA.

You'll see both BAKER and LOMBARDI because the view criteria
defined on the view object used the Contains operator. You could also
create the view criteria using, for example, the Starts with operator.

Showing customer rentals on a page
We have seen that we can find the right customers, but the wireframe indicated
that we also need to show their non-returned rentals. To achieve this, we first need
to change the layout of the page to make room for a table of rentals below the
customers and then place the actual rental table on the page.

Chapter 3

[117]

To change the layout, right-click on af:panelFormLayout in the Structure panel and
choose Surround With. Select a Panel Group Layout from the dialog and click on
OK. In the Property Inspector, set the Layout property of the newly created panel
group layout to Vertical. Also, set the StyleClass property to AFStretchWidth.
This is a built-in CSS style that tells ADF to render the component across all
available space.

We can't just drop the customer table onto the panel form layout. The
First/Previous/Next/Last buttons are in the footer facet of the panel
form layout, so they are always shown below the entire content of the
panel form layout. Instead, we just wrapped the panel form layout in
a vertical panel group layout so we can place the customer table below
the entire panel form layout (buttons and all).

Now expand the CustomerSearchResult node in the Data Controls panel, find the
RentalUnreturned element, and drag it onto the page below the buttons. In the
Create pop-up menu, choose Table | ADF Table. In the Edit Table Columns dialog,
remove all the XxxId columns (RentalId, InventoryId, and so on) as well as the
LastUpdate and ReturnDate columns. Set Row Selection to Single Row and check
the checkbox Enable Sorting to allow the user to sort rentals by clicking on column
headers. Finally, sort the columns in the following order:

Creating Task Flows and Pages

[118]

Next, click on OK. JDeveloper now places a table on the showRentals page
fragment, but you need to change a few things to make the table expand nicely
across all available space:

1.	 Select the af:table component in the Structure panel, and in the Property
Inspector, set the StyleClass property to AFStretchWidth in order to make
the table fill all available space.

2.	 Click on the Title column and find the value for Id (typically something
like c1). Then, select the table in the Property Inspector, and in the
ColumnStretching property (in the Appearance section), select the value
corresponding to the Title column (for example, column:c1). This tells ADF
to use any extra space for the Title column.

Your application should now look like this:

Chapter 3

[119]

Now right-click on simpleDvdStore.jspx and choose Run to run the application
again. You will now see a table of unreturned rentals for the current customer as
shown in the following screenshot:

Because we created a view link between customers and unreturned rentals (in
Chapter 2, Creating Business Services), ADF automatically takes care of the master-
detail navigation. Whenever you use the buttons to move between customers,
ADF automatically refreshes the table showing the unreturned rentals for that
specific customer. Remember that you will only find unreturned DVDs if you
updated the Sakila database from the default as described in Chapter 1, My First
ADF Essentials Application.

Notice a cool feature of the ADF splitter component we use: if you click on the
little triangle, the left-hand side is collapsed, and the right-hand side automatically
takes over this space. The Title column will take over the extra space because of the
ColumnStretching property. Also note that you can sort the table by clicking on
the column titles, and you can resize and even reorder the columns. The ADF table
component is pretty awesome!

Creating Task Flows and Pages

[120]

Adding navigation
The final thing missing from the application is the navigation back to the customer
search. This is really simple to add—just drag a button from the Component Palette
and drop it to the right of the Last button (inside the panel group layout box). Use
the Property Inspector to set the Text property to New search and select newSearch
as Action (the name of the navigation flow away from showRentals). Run your
application again and verify that the New search button takes you back to the
customerSearch page fragment.

Notice that the left-hand side of the screen is not repainted even though
you navigate between page fragments in the right-hand side. This is one
of the powerful features of ADF, called Partial Page Rendering—only
the parts of the screen that change need to be redrawn.

Summary
We have now built a good part of the application and can search and navigate
through records, including master-detail relationships. And we still haven't written
a single line of code. Have you seen enough declarative development? And are you
itching to start writing code? Quickly, on to the next chapter!

Adding Business Logic
So far, we have only been using the declarative power of JDeveloper and the ADF
framework. The application you saw running in the last chapter did not contain a
single line of hand-written code. Of course, declarative features can only get you
so far –– once you need to add the real-life business rules that are specific to your
application, you will have to start writing Java code.

This chapter will give you some examples of this — many other examples are
available on the Internet. At the end of the chapter, we will see how to implement
the business logic necessary for the DVD rental application.

If you are using Google to search for code snippets, always start
by searching only for results from within the past year (navigate to
Search Tools and change the Any time default setting to Past year). A
search without a date range is likely to show up old solutions, and a
lot of things have got easier in the later versions of JDeveloper.

Adding logic to business components
As you saw in Chapter 2, Creating Business Services, by default, a business component
does not have an explicit Java class. When you want to add Java logic, however, you
generate the relevant Java class from the Java tab of the business component.

On the Java tab, you also decide which of your methods are to be made available to
other objects by choosing to implement a Client Interface. Methods that implement
a client interface show up in the Data Control palette and can be called from outside
the object.

Adding Business Logic

[122]

Logic in entity objects
Remember from Chapter 2, Creating Business Services, that entity objects are closest to
your database tables –– most often, you will have one entity object for every table in
the database. This makes the entity object a good place to put data logic that must be
always executed. If you place, for example, validation logic in an entity object, it will
be applied no matter which view object attempts to change data.

In the database or in an entity object?
Much of the business logic you can place in an entity object can also
be placed in the database using database triggers. If other systems
are accessing your database tables, business logic should go into the
database as much as possible.

Overriding accessors
To use Java in entity objects, you open an entity object and select the Java tab. When
you click on the pencil icon, the Select Java Options dialog opens as shown in the
following screenshot:

In this dialog, you can select to generate Accessors (the setXxx() and getXxx()
methods for all the attributes) as well as Data Manipulation Methods (the doDML()
method; there is more on this later).

Chapter 4

[123]

When you click on OK, the entity object class is generated for you. You can open it
by clicking on the hyperlink or you can find it in the Application Navigator panel as
a new node under the entity object. If you look inside this file, you will find:

•	 Your class should start with an import section that contains a statement that
imports your EntityImpl class. If you have set up your framework extension
classes correctly (as described in Chapter 2, Creating Business Services), this could
be import com.adfessentials.adf.framework.EntityImpl. You will have
to click on the plus sign in the left margin to expand the import section.

•	 The Structure panel in the bottom-left shows an overview of the class
including all the methods it contains. You will see a lot of setter and getter
methods like getFirstName() and setFirstName() as shown in the
following screenshot:

•	 There is a doDML() method described later.

Adding Business Logic

[124]

If you were to decide, for example, that last name should always be stored in upper
case, you could change the setLastName() method to:

public void setLastName(String value) {
 setAttributeInternal(LASTNAME, value.toUpperCase());
}

Working with database triggers
If you decide to keep some of your business logic in database triggers, your triggers
might change the values that get passed from the entity object. Because the entity
object caches values to save database work, you need to make sure that the entity
object stays in sync with the database even if a trigger changes a value. You do this
by using the Refresh on Update property.

To find this property, select the Attributes subtab on the left and then select the
attribute that might get changed. At the bottom of the screen, you see various
settings for the attribute with the Refresh settings in the top-right of the Details
tab as shown in the following screenshot:

Chapter 4

[125]

Check the Refresh on Update property checkbox if a database trigger might change
the attribute value. This makes the ADF framework requery the database after an
update has been issued.

Refresh on Insert doesn't work if you are using MySQL and your
primary key is generated with AUTO_INCREMENT or set by a
trigger. ADF doesn't know the primary key and therefore cannot
find the newly inserted row after inserting it. It does work if you
are running against an Oracle database, because Oracle SQL
syntax has a special RETURNING construct that allows the entity
object to get the newly created primary key back.

Overriding doDML()
Next, after the setters and getters, the doDML() method is the one that most often
gets overridden. This method is called whenever an entity object wants to execute
a Data Manipulation Language (DML) statement like INSERT, UPDATE, or DELETE.
This offers you a way to add additional processing; for example, checking that the
account balance is zero before allowing a customer to be deleted. In this case, you
would add logic to check the account balance, and if the deletion is allowed, call
super.doDML() to invoke normal processing.

Another example would be to implement logical delete (records only change
state and are not actually deleted from the table). In this case, you would override
doDML() as follows:

@override
protected void doDML(int operation, TransactionEvent e) {
 if (operation == DML_DELETE) {
 operation = DML_UPDATE;
 }
 super.doDML(operation, e);
}

As it is probably obvious from the code, this simply replaces a DELETE operation
with an UPDATE before it calls the doDML() method of its superclass (your framework
extension EntityImpl, which passes the task on to the Oracle-supplied EntityImpl
class). Of course, you also need to change the state of the entity object row, for
example, in the remove() method. You can find fully-functional examples of this
approach on various blogs, for example at http://myadfnotebook.blogspot.
dk/2012/02/updating-flag-when-deleting-entity-in.html.

Adding Business Logic

[126]

You also have the option of completely replacing normal doDML() method
processing by simply not calling super.doDML(). This could be the case if you want
all your data modifications to go via a database procedure –– for example, to insert
an actor, you would have to call insertActor with first name and last name. In this
case, you would write something like:

@override
protected void doDML(int operation, TransactionEvent e) {
 CallableStatement cstmt = null;
 if (operation == DML_INSERT) {
 String insStmt = "{call insertActor (?,?)}";
 cstmt = getDBTransaction().createCallableStatement(insStmt,
 0);
 try {
 cstmt.setString(1, getFirstName());
 cstmt.setString(2, getLastName());
 cstmt.execute();
 }
 catch (Exception ex) {
 …
 } finally {
 …
 }

 }

}

If the operation is insert, the above code uses the current transaction (via the
getDBTransaction() method) to create a CallableStatement with the string
insertActor(?,?). Next, it binds the two parameters (indicated by the question
marks in the statement string) to the values for first name and last name (by calling
the getter methods for these two attributes). Finally, the code block finishes with
a normal catch clause to handle SQL errors and a finally clause to close open
objects. Again, fully working examples are available in the documentation and on
the Internet in various blog posts.

Normally, you would implement this kind of override in the framework extension
EntityImpl class, with additional logic to allow the framework extension class to
recognize which specific entity object the operation applies to and which database
procedure to call.

Chapter 4

[127]

Data validation
With the techniques you have just seen, you can implement every kind of business
logic your requirements call for. One requirement, however, is so common that it has
been built right into the ADF framework: data validation.

Declarative validation
The simplest kind of validation is where you compare one individual attribute to
a limit, a range, or a number of fixed values. For this kind of validation, no code is
necessary at all. You simply select the Business Rules subtab in the entity object,
select an attribute, and click on the green plus sign to add a validation rule. The Add
Validation Rule dialog appears as shown in the following screenshot:

You have a number of options for Rule Type –– depending on your choice here, the
Rule Definition tab changes to allow you to define the parameters for the rule.

Adding Business Logic

[128]

On the Failure Handling tab, you can define whether the validation is an error
(that must be corrected) or a warning (that the user can override), and you define
a message text as shown in the following screenshot:

You can even define variable message tokens by using curly brackets { } in your
message text. If you do so, a token will automatically be added to the Token Message
Expressions section of the dialog, where you can assign it any value using Expression
Language. Click on the Help button in the dialog for more information on this.

If your application might ever conceivably be needed in a different
language, use the looking glass icon to define a resource string stored in
a separate resource bundle. This allows your application to have multiple
resource bundles, one for each different user interface language.

There is also a Validation Execution tab that allows you to specify under which
condition your rule should be applied. This can be useful if your logic is complex and
resource intensive. If you do not enter anything here, your rule is always executed.

Chapter 4

[129]

Regular expression validation
One of the especially powerful declarative validations is the Regular Expression
validation. A regular expression is a very compact notation that can define the
format of a string –– this is very useful for checking e-mail addresses, phone
numbers, and so on. To use this, set Rule Type to Regular Expression as shown
in the following screenshot:

JDeveloper offers you a few predefined regular expressions, for example, the
validation for e-mails as shown in the preceding screenshot.

Even though you can find lots of predefined regular expressions on
the Internet, someone from your team should understand the basics
of regular expression syntax so you can create the exact expression
you need.

Adding Business Logic

[130]

Groovy scripts
You can also set Rule Type to Script to get a free-format box where you can write a
Groovy expression. Groovy is a scripting language for the Java platform that works
well together with Java –– see http://groovy.codehaus.org/ for more information
on Groovy.

Oracle has published a white paper on Groovy in ADF (http://
www.oracle.com/technetwork/developer-tools/jdev/
introduction-to-groovy-128837.pdf), and there is also
information on Groovy in the JDeveloper help.

Method validation
If none of these methods for data validation fit your need, you can of course always
revert to writing code. To do this, set Rule Type to Method and provide an error
message. If you leave the Create a Select Method checkbox checked when you click
on OK, JDeveloper will automatically create a method with the right signature and
add it to the Java class for the entity object. The autogenerated validation method for
Length (in the Film entity object) would look as follows:

/**
* Validation method for Length.
*/
public boolean validateLength (Integer length) {
 return true;
}

It is your task to fill in the logic and return either true (if validation is OK) or
false (if the data value does not meet the requirements). If validation fails, ADF
will automatically display the message you defined for this validation rule.

Logic in view objects
View objects represent the dataset you need for a specific part of the
application — typically a specific screen or part of a screen. You can create
Java objects for either an entire view object (an XxxImpl.java class, where Xxx is
the name of your view object) or for a specific row (an XxxRowImpl.java class).

A view object class contains methods to work with the entire data-set that the view
object represents –– for example, methods to apply view criteria or re-execute the
underlying database query. The view row class contains methods to work with an
individual record of data –– mainly methods to set and get attribute values for one
specific record.

Chapter 4

[131]

Overriding accessors
Like for entity objects, you can override the accessors (setters and getters) for view
objects. To do this, you use the Java subtab in the view object and click on the pencil
icon next to Java Classes to generate Java. You can select to generate a view row
class including accessors to ask JDeveloper to create a view row implementation
class as shown in the following screenshot:

This will create an XxxRowImpl class (for example, RentalVORowImpl) with setter
and getter methods for all attributes. The code will look something like the following
code snippet:

…
public class RentalVORowImpl extends ViewRowImpl {
…
/**
 * This is the default constructor (do not remove).
*/
 public RentalVORowImpl() {
 }

…
 /**
 * Gets the attribute value for title using the alias name
 * Title.
 * @return the title
 */
 public String getTitle() {
 return (String) getAttributeInternal(TITLE);

Adding Business Logic

[132]

 }

 /**
 * Sets <code>value</code> as attribute value for title using
 * the alias name Title.
 * @param value value to set the title
 */
 public void setTitle(String value) {
 setAttributeInternal(TITLE, value);
 }
…
}

You can change all of these to manipulate data before it is delivered to the entity
object or to return a processed version of an attribute value. At the end of this
chapter, we will use this method for a transient attribute that is not mapped to an
entity object. To use such attributes, you can write code in the implementation
class to determine which value to return.

You can also use Groovy expressions to determine values for transient
attributes. This is done on the Value subtab for the attribute by setting
Value Type to Expression and filling in the Value field with a Groovy
expression. See the Oracle white paper on Groovy in ADF (http://
www.oracle.com/technetwork/developer-tools/jdev/
introduction-to-groovy-128837.pdf) or the JDeveloper help.

Change view criteria
Another example of coding in a view object is to dynamically change which view
criteria are applied to the view object. You saw in Chapter 2, Creating Business Services,
that it is possible to define many view criteria on a view object –– when you add a
view object instance to an application module, you decide which of the available
view criteria to apply to that specific view object instance.

However, you can also programmatically change which view criteria are applied to
a view object. This can be useful if you want to have buttons to control which subset
of data to display –– in the example application, you could imagine a button to
"show only overdue rentals" that would apply an extra view criterion to a rental
view object.

Chapter 4

[133]

Because the view criteria apply to the whole dataset, view criteria methods go into
the view object, not the view row object. You generate a Java class for the view object
from the Java Options dialog in the same way as you generate Java for the view row
object. In the Java Options dialog, select the option to generate the view object class
as shown in the following screenshot:

A simple example of programmatically applying a view criteria would be a method
to apply an already defined view criterion called called OverdueCriterion to a view
object. This would look like this in the view object class:

public void showOnlyOverdue() {
 ViewCriteria vc = getViewCriteria("OverdueCriterion");
 applyViewCriteria(vc);
 executeQuery();
}

View criteria often have bind variables –– for example, you could have a view criteria
called OverdueByDaysCriterion that uses a bind variable OverdueDayLimit. When
you generate Java for the view object, the default option of Include bind variable
accessors (shown in the preceding screenshot) will create a setOverdueDayLimit()
method if you have an OverdueDayLimit bind variable.

A method in the view object to which we apply this criterion might look like the
following code snippet:

public void showOnlyOverdueByDays(int days) {
 ViewCriteria vc = getViewCriteria("OverdueByDaysCriterion");
 setOverdueDayLimit(days);
 applyViewCriteria(vc);
 executeQuery();
}

If you want to call these methods from the user interface, you must select create a
client interface for them (on the Java subtab in the view object). This will make your
method available in the Data Control palette, ready to be dragged onto a page and
dropped as a button.

Adding Business Logic

[134]

When you change the view criteria and execute the query, only
the content of the view object changes –– the screen does not
automatically repaint itself. In order to ensure that the screen
refreshes, you need to set the PartialTriggers property of the data
table to point to the ID of the button that changes the view criteria.
For more on partial page rendering, see the Oracle Fusion Middleware
Web User Interface Developer's Guide for Oracle Application Development
Framework (http://docs.oracle.com/cd/E37975_01/
web.111240/e16181/af_ppr.htm).

Logic in application modules
You've now seen how to add logic to both entity objects and view objects. However,
you can also add custom logic to application modules. An application module is the
place where logic that does not belong to a specific view object goes –– for example,
calls to stored procedures that involve data from multiple view objects.

To generate a Java class for an application module, you navigate to the Java subtab
in the application module and select the pencil icon next to the Java Classes heading.
Typically, you create Java only for the application module class and not for the
application module definition.

You can also add your own logic here that gets called from the user interface or you
can override the existing methods in the application module. A typical method to
override is prepareSession(), which gets called before the application module
establishes a connection to the database –– if you need to, for example, call stored
procedures or do other kinds of initialization before accessing the database, an
application module method is a good place to do so. Remember that you need
to define your own methods as client methods on the Java tab of the application
module for the method to be available to be called from elsewhere in the application.

Because the application module handles the transaction, it also contains methods,
such as beforeCommit(), beforeRollback(), afterCommit(), afterRollback(),
and so on.

The doDML() method on any entity object that is part of the transaction
is executed before any of the application modules' methods.

Chapter 4

[135]

Adding logic to the user interface
Logic in the user interface is implemented in the form of managed beans. These are
Java classes that are registered with the task flow and automatically instantiated by
the ADF framework. As you might remember from Chapter 3, Creating Task Flows and
Pages, ADF operates with various memory scopes –– you have to decide on a scope
when you define a managed bean.

Adding a bean method to a button
The simplest way to add logic to the user interface is to drop a button
(af:commandButton) onto a page or page fragment and then double-click on it. This
brings up the Bind Action Property dialog as shown in the following screenshot:

If you leave Method Binding selected and click on New, the Create Managed Bean
dialog appears as shown in the following screenshot:

Adding Business Logic

[136]

In this dialog, you can give your bean a name, provide a class name (typically the
same as the bean name), and select a scope. The backingBean scope is a good scope
for logic that is only used for one action when the user clicks on the button and
which does not need to store any state for later. Leaving the Generate Class If It
Does Not Exist checkbox checked asks JDeveloper to create the class for you. When
you click on OK, JDeveloper will automatically suggest a method for you in the
Method dropdown (based on the ID of the button you double-clicked on). In the
Method field, provide a more useful name and click on OK to add the new class and
open it in the editor. You will see a method with your chosen name, as shown in the
following code snippet:

Public String rentDvd() {
 // Add event code here...
 return null;
}

Obviously, you place your code inside this method.

If you accidentally left the default method name and ended up
with something like cb5_action(), you can right-click on the
method name and navigate to Refactor | Rename to give it a more
descriptive name.

Note that JDeveloper automatically sets the Action property for your button
matching the scope, bean name, and method name. This might be something like
#{backingBeanScope.RentalBean.rentDvd}.

Adding a bean to a task flow
Your beans should always be part of a task flow. If you're not adding logic to a button,
or you just want more control over the process, you can also create a backing bean
class first and then add it to the task flow.

A bean class is a regular Java class created by navigating to File | New | Java Class.

When you have created the class, you open the task flow where you want to use it
and select the Overview tab. On the Managed Beans subtab, you can use the green
plus to add your bean. Simply give it a name, point to the class you created, and
select a memory scope.

Chapter 4

[137]

Accessing UI components from beans
In a managed bean, you often want to refer to various user interface elements. This is
done by mapping each element to a property in the bean.

For example, if you have an af:inputText component that you want to refer to in
a bean, you create a private variable of type RichInputText in the bean (with setter
and getter methods) and set the Binding property (under the Advanced heading) to
point to that bean variable using Expression Language. We'll see this method used in
the example application at the end of this chapter.

When creating a page or page fragment, you have the option (on the Managed Bean
tab) to automatically have JDeveloper create corresponding attributes for you. The
Managed Bean tab is shown in the following screenshot:

Leave it on the default setting of Do Not Automatically Expose UI Components
in a Managed Bean. If you select one of the options to automatically expose UI
elements, your bean will acquire a lot of attributes that you don't need, which will
make your code unnecessarily complex and slow. However, while learning ADF,
you might want to try this out to see how the bean attributes and the Binding
property work together.

Adding Business Logic

[138]

If you do activate this setting, it applies to every page and fragment
you create until you explicitly deselect this option.

Accessing the binding layer
While the preceding method gives you access to all the user interface elements
shown on the page, you will often need to access other data in order to make a
decision. To do this, you need to programmatically access the binding layer.

If you are familiar with JDBC but not yet familiar with data bindings,
you might be tempted to write JDBC to directly access the database.
Do not do this! It violates the separation of layers in the Model-view-
controller (MVC) pattern, makes your code hard to maintain and
might introduce subtle bugs when your bean accesses the values in the
database, but the user interface is working on non-committed data.

The first part of accessing the binding layer is always to get a BindingContainer.
You do this with the following code:

BindingContainer bc =
 BindingContext.getCurrent().getCurrentBindingsEntry();

You want your class to import the oracle.binding.BindingContainer interface
and the oracle.adf.model.BindingContext class –– JDeveloper will normally
prompt you for these imports.

Working with attribute values
If you want to access the value of an attribute, you first need to get a handle to the
attribute binding as done in the following code snippet:

AttributeBinding ab =
 (AttributeBinding)bc.getControlBinding("AttrName");

Then you can retrieve the value with attr.getInputValue() and set it with attr.
setInputValue().

Chapter 4

[139]

This only works if such an attribute binding already exists. From the page where
you are using the bean, you can click on the Bindings tab to see the existing attribute
bindings (in the left-hand Bindings box), as shown in the following screenshot:

The preceding screenshot shows attribute bindings for CustomerId, FirstName,
LastName, and Email. If you drop individual attributes from a view object instance
on a page, JDeveloper creates a binding for that specific attribute –– if you drop a
whole view object instance as an ADF form, JDeveloper will automatically create
attribute bindings for all the attributes you select. If you don't see the attribute
binding you need, you can add it with the green plus in the Bindings box.

Working with operations
If you want to work with operations on your data controls, you must first get a
handle to the operations binding, as done in the following code snippet:

OperationBinding ob =
 bc.getOperationBinding("OprName");

Then, you can execute the operation with ob.execute().

If your operation takes parameters, you can call getParamsMap() to get a map object
that you can populate with parameter names and values before calling execute().

Like for attribute bindings, this only works if the operation you want to call is
already defined in your binding context. The preceding screenshot shows operation
bindings for the First, Previous, Next, and Last built-in methods that a data control
always has. Like for attribute bindings, you can add operation bindings by clicking
on the green plus sign.

Adding Business Logic

[140]

Working with whole datasets
If you want to work with more than just a single value, you need to access data
through an iterator. To get a handle to the iterator, you first need to cast your
binding container object to a DCBindingContainer, as shown in the following
code snippet:

DCBindingContainer dcb = (DCBindingContainer)bc;

Technically, BindingContainer is a Java interface, not a class.
So, when you used the business component object earlier, you
were actually using a JUFormBinding class implementing the
BindingContainer interface.

Once you have the DCBindingContainer, you can retrieve the actual iterator with
code, as shown in the following code snippet:

DCIteratorBinding iter = (DCIteratorBinding)
 dcb.findIteratorBinding("IterName");

This iterator object has the following methods to work on the dataset:

•	 getCurrentRow() returns a Row object for the current row.
•	 getAllRowsInRange() returns an array of Row objects representing all the

rows that the iterator covers. Once you have this array, you can loop through
it like any other array.

The Row objects have the getAttribute() and setAttribute() methods you can
use to retrieve and change attribute values.

Showing messages
At some point in your ADF application development, you will come across the
need to display a message to the user. The simplest way to do this is to make
use of the JSF FacesContext object. This object represents all of the contextual
information about a request and is created automatically; you can read information
from it and add information to it during your processing of the request, and JSF will
automatically display any messages that you have placed in the context at the end
of request processing.

Chapter 4

[141]

To display a message, use code like the following:

FacesContext fctx = FacesContext.getCurrentInstance();
FacesMessage fm = new FacesMessage("Message text");
fm.setSeverity(FacesMessage.SEVERITY_WARN);
fctx.addMessage(null, fm);

There are various severity levels available for informational messages, warnings,
and errors.

The first parameter in the addMessage() method can be used to place the message
near a specific component. If you use null as done in the preceding code snippet,
the message will simply be centered on the screen. To place it near a component,
you need access to the UI component you want to place the message near. The
process of getting a pointer to a specific UI component in a bean is the same as
described in the subsection Accessing UI components from beans in the Adding logic
to the user interface section:

1.	 You create a property in your bean of the right class (for example,
RichInputText for an input field) with setter and getter methods.

2.	 You connect the UI component on the page to the bean attribute by setting
the Binding property.

So, if you have defined a FirstName element in your bean class, created a
getFirstName() getter and a setFirstName() setter, and connected it to a UI
component, your message code would look as follows:

Fctx.addMessage(getFirstName().getClientId(fctx), fm);

This will place the message close to that specific UI component.

Example application
The simple DVD rental application that we are building needs programming in
two places:

•	 To register a rental (create new record)
•	 To register a return (update an attribute value)

Adding Business Logic

[142]

Registering a rental
You probably remember from Chapter 3, Creating Task Flows and Pages, that
registering a new rental is simply a matter of registering two data values when the
store clerk presses a button. The screen is shown in the following screenshot:

In this simple demo application, we are assuming that the clerk will read a customer
ID from a membership card and an inventory ID from the cover of the DVD –– in a
more user-friendly application, you could of course expand on this. But for now, we
just need to insert a new record into the Rental table when the user has entered two
values and pressed the button.

Creating a bean
Start by opening the RentDvd page fragment and double-clicking on the Register
rental button. This brings up the Bind Action Property dialog where you can click
on New to create a new managed bean. Give your bean the name RentalBean, class
name RentalBean, provide a class name (by convention, beans are placed in their
own .beans subpackage), and select the backingBean scope. The dialog should look
as shown in the following screenshot:

Chapter 4

[143]

Click on OK to create the class. Change the method name to rentDvd (click inside the
Method field and type the name; do not select the drop-down arrow) and click on
OK. Your new bean class opens in the editor. Change to the tab showing the rentDvd
page and verify that the Action property of the button is now #{backingBeanScope.
RentalBean.rentDvd}.

Mapping the fields
Inside the bean, we need attributes matching the two fields on the screen and
corresponding accessor methods. Add two attributes of type RichInputText called
customer and inventory, right-click on the code, and click on Generate Accessors
to generate setters and getters. Your code will look something like follows:

package com.vesterli.demo.rental.view.beans;

import ...

public class RentalBean {
 private RichInputText customer;
 private RichInputText inventory;

 public RentalBean() {
 }
 public String rentDvd() {
 }
 public void setCustomer(RichInputText customer) {
 this.customer = customer;
 }
 public RichInputText getCustomer() {
 return customer;
 }
 public void setInventory(RichInputText inventory) {
 this.inventory = inventory;
 }
 public RichInputText getInventory() {
 return inventory;
 }
}

Now the bean has two RichInputText attributes, but they are not connected to the
actual input fields on the page yet. To do this, select the Customer Id field, navigate
to the Advanced subtab, click on the little down arrow to the left of the Binding
property, and click on Edit.

Adding Business Logic

[144]

In the Edit Property dialog, choose the RentalBean managed bean and the customer
property from the dropdowns, as shown in the following screenshot:

When you close this dialog, you should see the Binding property set to
#{backingBeanScope.RentalBean.customer}.

In a similar way, connect the Inventory Id field to the inventory property.

Establishing bindings
We want our code to perform a database commit when the user clicks on the button,
so we need to create a binding for the Commit operation from our data control.

Because we have not used the JDeveloper drag-and-drop features on this page at all,
the rentDVD.jsff page fragment has no Page Definition file. To create one, right-
click on the page fragment, click on Go to Page Definition, and answer Yes in the
dialog asking you if you want to create this. The page definition for the page opens
as shown in the following screenshot:

On this page, click on the green plus sign next to Bindings to create a new binding
and click on action in the Insert Item dialog. The Create Action Binding dialog
appears. Select the data control at the top and set Operation to Commit in the
middle of the dialog as shown in the following screenshot:

Chapter 4

[145]

When you click on OK, an action binding is created for you.

All of this happens automatically when you drag the Commit operation
onto a page from the data control. Because we just want the Commit
action binding in order to call it programmatically (and not the button),
we have to create the binding manually as shown in this section.

Next, we need an Iterator (a pointer to a specific record in the view object). Click
on the green plus sign next to Executables and select iterator. In the Create Iterator
Binding dialog, expand the data control, choose the RentalVO view object and click
on OK. Your page bindings should now look as follows:

Adding Business Logic

[146]

Writing the code
The preceding procedure makes the value of the two fields available to the logic in
the bean –– what remains is to add the actual insert in the rentDvd() method. Your
code should look as follows:

public String rentDvd() {
 BindingContainer bc =
 BindingContext.getCurrent().getCurrentBindingsEntry();
 DCBindingContainer dcb = (DCBindingContainer)bc;
 DCIteratorBinding rentalIter =
 dcb.findIteratorBinding("RentalVOIterator");
 NameValuePairs attrib = new NameValuePairs();
 attrib.setAttribute("CustomerId", customer.getValue());
 attrib.setAttribute("InventoryId", inventory.getValue());
 //TODO: Look up user later when adding security
 attrib.setAttribute("StaffId", 1);
 attrib.setAttribute("RentalDate",
 new Timestamp(System.currentTimeMillis()));
 attrib.setAttribute("LastUpdate",
 new Timestamp(System.currentTimeMillis()));
 ViewObject rentalVO = rentalIter.getViewObject();
 rentalVO.createAndInitRow(attrib);
 OperationBinding ob = bc.getOperationBinding("Commit");
 ob.execute();
 return null;
}

As you write the code, you will be prompted for various imports that
exist in several packages –– import BindingContainer from oracle.
binding, BindingContext from oracle.adf.model, Timestamp
from java.sql, and OperationBinding from oracle.binding.

You'll recognize the part about getting an iterator binding from earlier in
this chapter.

The next part creates a NameValuePairs object that we need in order to call the
createAndInitRow() method that actually creates the new record. Because the bean
has a customer attribute, we can just use customer.getValue() to get the value
that the user has entered into the customer field (and similarly for inventory). We
must provide a Staff ID –– since we haven't added security yet, we'll just hardwire a
constant in for now.

Chapter 4

[147]

Next, we get the view object rentalVO from the iterator because the
createAndInitRow() method we need to create a new view row is found on the
ViewObject object.

Finally, we get the Commit binding and execute it in order to commit the transaction
to the database.

Registering a return
We also need to be able to register when a customer returns a DVD. We didn't
include this functionality in the user interface wireframe, so there is no button or
other way to return a DVD yet.

There are at least three ways to allow the user to mark multiple rentals returned:

1.	 Add a checkbox to each row and a button to mark all checked rentals as
returned. The logic behind the button would loop through the iterator and
update all records where the checkmark is checked.

2.	 Use the ADF multi-select feature (the RowSelection property multiple on
af:table) and a button. The button would use the getSelectedRowKeys()
method on the RichTable object to retrieve the selected rows, look them up
in the view object, and update them.

3.	 Add a button to each row, set RowSelection single to ensure that only one
row is selected, and use getSelectedRowKeys() as above to update that
one row.

Because we can't be sure the user realizes that they can do multi-select (the feature is
not "discoverable" in user experience terminology), we don't want to do number 2.
Number 1 is the typical way of doing multi-record operations in a web application,
but option number 3 actually saves a click, so we'll go with that option.

Adding a column and a button
First, we need to add an extra column to the rentals table. Open the showRentals.
jsff page fragment and find the af:table in the Structure panel (in the bottom- left
corner of the JDeveloper window). Right-click on it and click on Insert Inside af:table,
Column. This adds a blank column to your table. It should be added last (right-most)
— if it isn't, grab it in the Structure panel and drag-and-drop it to be last in the table.

Select the column and set the HeaderText property to Return.

Adding Business Logic

[148]

Finally, drag a Button component from the Component Palette onto the newly
created column and set the Text property for the button to Return. Your screen
should now look as shown in the following screenshot:

Creating a bean
To create a managed bean, you can double-click on the new Return button and click
on New to create a new managed bean. Give it the name ReturnBean, class name
ReturnBean, provide a class name, and select the backingBean scope. Click on OK
and give the method the name returnDvd.

Mapping the table
In this bean, we need a table property in order to retrieve the selected record, so you
need to add a RichTable attribute with the name filmRentalTable and create a setter
and getter (right-click on Generate Accessors). Your code will look something like as
shown in the following code snippet:

package com.vesterli.demo.rental.view.beans;

import ...

public class ReturnBean {
 private RichTable filmRentalTable;

 public RentalBean() {
 }
 public String returnDvd() {

Chapter 4

[149]

 }
 public void setFilmRentalTable (RichTable filmRentalTable) {
 this.filmRentalTable = filmRentalTable;
 }
 public RichTable getFilmRentalTable () {
 return filmRentalTable;
 }
}

Connect the RichTable property to ReturnBean by returning to the
showRentals page fragment and setting the Binding property of the table to
#{backingBeanScope.ReturnBean.filmRentalTable}.

Creating a view object method
To illustrate how to add logic to the business components, we will add a method
called registerReturn() to the RentalVO view row object. To generate the Java
class where our method goes, open the model project and then the RentalVO view
object, navigate to the Java tab, and click on the pencil icon next to Java Classes to
open the Select Java Options dialog. Check the checkbox next to Generate View
Row Class and click on OK.

This method will work on an individual record, so it goes into the
view row class. Methods that work on the entire dataset of the view
object should go into the view class.

Open your RentalVORowImpl class by clicking on the link in the Java tab. Scroll
down to the bottom and add the following code:

public String registerReturn () {
 Timestamp now = new Timestamp(System.currentTimeMillis());
 setReturnDate(now);
 return null;
}

Then, navigate to Build | Make RentalModel.jpr to compile your code.

Adding Business Logic

[150]

Publishing your method
In order to make your new method available for other classes to call, you need to
create a Client Row Interface. On the Java tab of the RentalVO view object, click on
the pencil icon next to Client Row Interface as shown in the following screenshot:

In the Edit Client Row Interface dialog, move your new registerReturn() method
to the right-hand (Selected) box and click on OK. Your RentalVO view object should
be updated to show some additional classes as shown in the following screenshot:

Chapter 4

[151]

Establishing bindings
Like before, we want to perform a database commit when the user clicks on the button,
so we need to create a binding for the Commit operation from our data control.

Because we have dropped items from the Data Control palette onto the showRentals.
jsff page fragment, it already has a Page Definition file. Click on the Bindings tab to
see it, and then use the green plus sign next to the Bindings heading to create an action
binding for the Commit operation like we just did for the rentDvd.jsff page fragment
in the preceding section.

Writing the bean code
Now all you need to do is to add business logic to the returnDvd() method in the
ReturnDvd bean to find the current row and call the registerReturn() method on
the view object. Use code like the following:

public String returnDvd() {
 // find selected row (the table iterator)
 RowKeySet sel = getFilmRentalTable().getSelectedRowKeys();
 Iterator selIter = sel.iterator();
 // get iterator for all data records
 BindingContainer bc =
 BindingContext.getCurrent().getCurrentBindingsEntry();
 DCBindingContainer dcb = (DCBindingContainer)bc;
 DCIteratorBinding rentalIter =
 dcb.findIteratorBinding("RentalUnreturnedIterator");
 RowSetIterator rsi = rentalIter.getRowSetIterator();
 // find the selected record in the data iterator
 Key key = (Key)((List)selIter.next()).get(0);
 RentalVORow r = (RentalVORow)rsi.getRow(key);
 r.registerReturn();
 OperationBinding ob = bc.getOperationBinding("Commit");
 ob.execute();
 return null;
}

For the imports that exist in several packages, choose
BindingContainer from oracle.binding, BindingContext
from oracle.adf.model, Key from oracle.jbo, List from
java.util, and OperationBinding from oracle.binding.

Adding Business Logic

[152]

The first part here uses the getSelectedRowKeys() method to get a RowKeySet and
then gets an iterator to the selected rows. Because we chose option 3, there can only
be one selected row, but the method always returns an iterator in order to allow for
multiple selected rows.

The second part is the normal method for accessing data through a binding. In
this case, we get a RowSetIterator from the data iterator, because this object has
a getRow(Key) method that we can use to efficiently retrieve a single row by a
Key object.

The Key line uses the next() method from the selection iterator to get all the data
from the selected row, cast it to a List, and then get the first element. Because this
is the key, it can be cast to a Key object that is then used to look up the RentalVORow
object that represents the selected data record. In this object, we call the method to
register a return, and the transaction is committed as before.

Marking items returned today
The last example of business logic coding in this chapter is showing the returned
items in a different style (specifically, with a strikethrough line through the text). To
do this, we will use conditional formatting.

The appearance of elements in the application is controlled by the style
properties. These can be hard-wired (for example, color: Green;), but
they can also be set to dynamic values using Expression Language. You
can refer to a bean value (for example, #{pageFlowScope.myBean.
colorAttribute}) or to a value from the underlying data binding (for
example, #{row.bindings.TextFormat.inputValue}).

Creating a transient attribute
In this case, we will create a new attribute in the RentalVO view object and write
code in the RentalVORowImpl class to determine the value to return when the user
interface requests it.

First, open the RentalVO view object and click on the Attributes subtab. Click on the
green plus sign and choose New Attribute. This creates a new transient attribute,
that is, one that is not based on the entity object and will not be stored in the
database. Give it the name TextFormat. JDeveloper automatically adds accessors for
this new attribute to the view row Java class.

Chapter 4

[153]

Binding the new attribute
The new attribute is not automatically added to the bindings. Open the showRentals.
jsff page fragment and switch to the Bindings tab. Click on the RentalUnreturned
tree binding and then on the pencil icon next to the Bindings header.

Move the new TextFormat attribute from the Available Attributes box to the
Display Attributes box as shown in the following screenshot:

Coding the attribute return value
Find the RentalVORowImpl.java class in the Application Navigator (it's a sub-node
under the RentalVO view object node in the Model project). If you scroll through this
class, you will find that it has setter and getter methods for all attributes, including
the new TextFormat attribute:

public String getTextFormat() {
 return (String) getAttributeInternal(TEXTFORMAT);
}

Adding Business Logic

[154]

/**
 * Sets <code>value</code> as the attribute value for
 * the calculated attribute TextFormat.
 * @param value value to set the TextFormat
*/
public void setTextFormat(String value) {
 setAttributeInternal(TEXTFORMAT, value);
}

In this case, we want to override the getter, that is, replace the content of the method
with our own business logic. More specifically, we want to return a specific text
string with special styling information in case the film has been returned.

Add a new constant at the top of the class:

public class RentalVORowImpl extends ViewRowImpl
 implements RentalVORow {
 private static final String RETURNED_STYLING =
 "text-decoration:line-through;";

Also, change the getter method getTextFormat() to contain the following:

public String getTextFormat() {
 String retval = null;
 if(getReturnDate() != null) {
 retval = RETURNED_STYLING;
 }
 return retval;
 }

This logic means that the row has a return date; the getTextFormat() method
returns the text string text-decoration:line-through;. If there is no return date,
the method returns null.

Using the attribute value
Finally, we need to use this bean value to change the appearance of the fields in the
rental table.

Find af:inputText in the first column of the table on the showRentals.jsff
page fragment and set the ContentStyle attribute to #{row.bindings.TextFormat
.inputValue}.

Chapter 4

[155]

The reference to #{binding ...} works for individual
attributes. When you need to work with the binding values for
the current row of a multi-row component such as a table or a
tree, you need to use #{row.binding ...}.

Repeat this process for the input text elements in the remaining columns. When you
run the application, you will see that all fields in the row change to the strikeout look
when you click on the Return button. The screenshot below shows the second rental
has just been returned:

Other ideas
If you want to allow the user to cancel the return, you could create another button
with the text Cancel return in the same column. You could also create a bean
method to "un-return" the item by clearing the return date, and then use a bean
method to control which of the two buttons would be rendered (using the
Rendered property).

Summary
In this chapter, you have seen some examples of how to add Java code to your
application to implement the specific business logic your application needs. There
are many, many more places and ways to add logic –– as you work with ADF, you
will continually come across new business requirements that force you to figure out
how to add code to your application in new ways. Fortunately, there are other books,
websites, online tutorials, and training that you can use to add to your ADF skillset
–– refer to http://www.adfessentials.com for a starting point.

Until now, we have kept everything in one application workspace in JDeveloper.
That's fine for small applications, but if you are building something larger than the
little demo application in this book, you will need a way to split your application up
into independent modules. That's the topic of Chapter 5, Building Enterprise Applications.

Building Enterprise
Applications

So far, we have kept everything in one workspace for simplicity. If you are the only
developer on the project, this approach works well. But in a larger setting with many
developers, you need to set up a good structure to ensure that people do not get in
each other's way.

If you are developing ADF on your own as a one-man team, feel free to
skip this chapter the first time you read the book (but do come back to
it when you start on a larger project).

Whenever you start working on a development project, remember to decide on a
project abbreviation of 3 to 5 characters that you can use in Java package names,
filenames, and so on. For the DVD rental application used as an example in this
book, we will use DRA.

Structuring your code
As you have seen in previous chapters, even a small application contains quite
a few objects—entity objects, view objects, application modules, task flows,
page fragments, managed beans, and many others. A large application will have
hundreds or thousands of objects, so it becomes very important to keep everything
in a logical structure. This allows you to divide work among the members of your
team, and also ensures that everyone can find what they need.

Building Enterprise Applications

[158]

Workspaces and projects
You've been working with only one workspace so far, but a larger application
becomes unmanageable if you try to keep everything in one workspace.

JDeveloper uses the word "application" for a workspace. This wording
is imprecise, because only fairly-small applications will only use one
workspace. Additionally, you will have many workspaces that are not
complete applications. Whenever you see JDeveloper use the word
"application", think "workspace".

Inside a workspace, you have one or more projects that can have dependencies on
each other. We already saw dependencies in Chapter 2, Creating Business Services,
where we defined a dependency on our FameworkExtension project. When you
create an application of type Fusion Web Application (ADF), JDeveloper creates
two projects where the View project depends on the Model project. You can also have
simple workspaces with only one project, or more advanced workspaces containing
many projects.

With the help of ADF libraries, it is easy to use the output of a project in other
workspaces. This allows a number of smaller development teams to work on
separate subsystems so your large application is built in a modular fashion.

The workspace hierarchy
You should think of your workspaces as placed in a hierarchy (similar to object
inheritance). Your basic, low-level workspaces can be included in higher-level
subsystem workspaces, and the subsystem workspaces can be combined into the
master application shown as follows:

Chapter 5

[159]

We have already built framework extension classes in Chapter 2, Creating Business
Services. These should go into the Common Code Workspace together with all the
other general utility classes you build during the course of the project.

In Chapter 3, Creating Task Flows and Pages, you built page flow templates and page
templates before you built the actual pages. In a larger, real-life application, these
should go into Common UI Workspace. If you decide to customize the way the
application looks (using a technique known as "skinning"), the stylesheet and other
elements of the skin also go into the Common UI Workspace.

Similar to the Common UI Workspace, you should have a Common Model
Workspace for all your entity objects. You only need one entity object for each
database table, so unless your application is very large, it makes sense to keep these
together in one workspace. This workspace can also be used for View objects that are
common to the entire application; for example, View objects used for value lists.

The Subsystem Workspaces are where you develop the actual screens that the
user sees. Depending on your application and the size of your team, you can have
many or few subsystem workspaces. A subsystem should contain a coherent subset
of the total application—between three and ten workspaces are typical, but a large
application can have dozens.

If you are using task flows with page fragments, your task flows are
not directly runnable. In this case, your subsystem should include one
or more test pages to run your subsystem in isolation for debugging
and testing.

All of your subsystem workspaces are combined into the Master Workspace that
defines the full application. The Master Workspace is where common elements such
as application-wide menus are defined, and application security is typically also
added here.

The directory structure
Your entire application should be placed into a base folder with subfolders for each
application workspace.

Additionally, you need to decide on a place to put the ADF libraries that have been
released by the build/deployment manager. Typically, you create a directory inside
the Master Application Workspace for released ADF libraries.

Building Enterprise Applications

[160]

Using version control
Of courses, you need to use a version control system for your application. It would
be nice if we could use a modern distributed versioning system such as GIT, but that
is unfortunately not possible. At the time of writing, two different branches of the
JDeveloper product exist:

•	 The 11gR1 branch (11.1.1.x version numbers) that supports GIT, but not ADF
Essentials and GlassFish

•	 The 11gR2 branch (11.1.2.x version numbers) that support JSF 2.0, ADF
Essentials, and GlassFish, but not GIT

Hopefully, by the time you read this, Oracle will have delivered the promised
JDeveloper Version 12c, which supposedly will support both ADF Essentials/
GlassFish and GIT version control.

Therefore, this book has to use Subversion to illustrate version control in enterprise
ADF applications. The Subversion client is normally installed automatically in
JDeveloper 11gR2—if it is not there, use Help | Check for Updates to find and
install it. Before you can start using version control in JDeveloper, you must create a
connection to a repository. This is done with the Create Connection command on the
Versioning menu, where you need to provide a repository URL, a connection name,
and username/password for the repository.

After creating the connection, you should change a setting in JDeveloper to make
it automatically commit new files. Navigate to Tools | Preferences | Versioning
| Subversion. You might have to click on Load Extension the first time you use
the versioning features in JDeveloper. Then, choose General and make sure the
checkbox Automatically Add New Files on Committing Working Copy is selected
as shown in the following screenshot:

Chapter 5

[161]

If you don't select this checkbox, you will manually have to monitor the Pending
Changes panel (Versioning, Pending Changes) to add new files. Because a simple
action in JDeveloper sometimes creates multiple files that you don't immediately see,
it is a good idea to let JDeveloper automatically add new files as they are created.

As already mentioned, at least the build/deployment manager needs a version
control client outside JDeveloper in order to handle ADF libraries. The examples in
this book use TortoiseSVN, which integrates into the Windows Explorer.

Use the same Subversion client
If you are running JDeveloper 11.1.2.4, the built-in JDeveloper client is
1.7.x. In order for JDeveloper and TortoiseSVN to work together, also
use a 1.7.x version of TortoiseSVN. The latest TortoiseSVN (1.8.x) will
create Version 1.8 working directories that JDeveloper can't read.

Building Enterprise Applications

[162]

Working with ADF libraries
When we started with the DVD rental application in Chapter 2, Creating Business
Services, we created a Fusion Web Application (ADF). This creates a workspace with
both a model and a view/controller project with the right technologies selected. In
this chapter, you will see how we can also use a Custom Application workspace and
select the relevant technologies ourselves.

Remember to use separate Java package names for each workspace,
including subsystem workspaces. When you combine libraries
from different workspaces, you only have the package name to
find out where each component comes from. If you accidentally
use the same package name twice, you might get subtle and hard-
to-find bugs once you collect all your ADF libraries in the master
application workspace.

ADF libraries are built from projects inside workspaces, so each workspace will
produce one or more ADF libraries for other workspaces to use. An ADF library is
in essence a regular .jar file, but with some added metadata to allow JDeveloper to
recognize specific ADF constructs (task flows, business components) inside the file.

Version control outside JDeveloper
Because the ADF libraries you produce don't show up in the
Application Navigator in JDeveloper, it is easiest to version control
them outside JDeveloper. If you are using Subversion, TortoiseSVN
is a good client that integrates with Windows Explorer for right-
click version control.

Creating ADF libraries
In each workspace, you work until you have implemented some agreed functionality,
tested and debugged it, and checked it into your version control system. Then, you
create an ADF library that the build/deployment manager then releases for everybody
else in the project to use.

To create an ADF library from a project, right-click on the project and choose
Deploy, New Deployment Profile. Choose ADF Library JAR File and give your
deployment profile a name. Use a naming standard such as adflib<application
abbreviation><library name> for example, adflibDraCommonCode.

In the Edit ADF Library JAR Deployment Profile Properties dialog, always
remember to choose Connections and change the setting for Include to Connection
Name Only as shown in the following screenshot:

Chapter 5

[163]

You do not want your library to include connection details—if your library contains
specific connection information for connecting to your development database, the
application will fail when moved to the test environment.

When you click on OK, your deployment profile is created. You can now right-click
on the project again, click on Deploy, and choose your deployment profile. You
might be prompted where to deploy to—in that case, just select Deploy to ADF
Library JAR File and then click on Finish. This will create a .jar file with the same
name as your deployment profile in the deploy subdirectory under your project.

You can always edit your deployment profiles by right-clicking on
the project and choosing Project Properties and then Deployment.

Because the ADF library file does not show up in JDeveloper, you need to go
to the filesystem and check the ADF library .jar file into your source control
system manually.

Releasing ADF libraries
Once the team responsible for a specific workspace has built an ADF library, it is the
responsibility of a build/deployment manager to release it for use by the rest of the
project. Depending on the level of formality in your project, this release procedure
can take many forms. In an informal project, the build/deployment manager might
simply talk to the developers to make sure that they have performed agreed tests.
In a project with formal quality gates, the ADF library might be subjected to various
tests before being released to the rest of the project.

Once the build/deployment manager is satisfied, he/she retrieves the ADF library
file from the source control repository (in the workspace), copies it to the master
ADF library location, and checks it in to the source control system.

Building Enterprise Applications

[164]

Using ADF libraries
In order to add an ADF library to a project, you should create a filesystem connection
to the directory containing your ADF library JAR files. To do this, open the Resource
Palette from the View menu. Click on the New button in the Resource Palette and
choose New Connection | File System as shown in the following screenshot:

Give your connection a name and point to the location where you have decided
to keep ADF libraries released by the build/deployment manager (for example,
adfjars in your Master Application Workspace).

Now, the Resource Palette will show the available libraries in this directory. To
actually use a library in a project, simply select the project in the Application
Navigator and right-click on a library in the Resource Palette and choose Add to
Project. You can also drag a library from the Resource Palette onto the project.

Example application
The rest of this chapter illustrates the preceding concepts by showing how to re-build
the example DVD rental application in a proper enterprise application structure.
Naturally, the descriptions are going to be somewhat less detailed—if you need the
detailed instructions on how to build a specific part of the application, refer to the
previous chapters. For brevity, this chapter will give explicit directions for package
names, directories, and so on.

Conceptually, we are cutting the existing application up into five parts—in practice,
we will be building five new application workspaces.

Chapter 5

[165]

There are all kinds of complicated interdependencies in ADF
projects. It is theoretically possible to make five copies of the existing
application and delete various parts from each, but in practice, it will
take more time to fix all the broken references than simply building
everything again.

Creating the Master Application Workspace
As you saw earlier, we need a Master Workspace to collect the output of each
subsystem workspace. For now, we will just create the workspace and the directory
for ADF libraries—later in this chapter, we will add a master page and other
elements to glue the various subsystems together in a complete application.

Creating the workspace
Create a new generic application workspace by selecting File | New | General |
Applications | Custom Application. Call your application DraMaster, place it in
the directory C:\adfessentials\mywork\DraMaster, and give it the name com.
adfessentials.dra.

We are using DRA because we decided that this is the abbreviation
for our DVD rental application.

The wizard asks you for the name of one project. Also call this project DraMaster
and include the following from the Project Features list:

•	 ADF Business Components
•	 ADF Faces
•	 HTML and CSS
•	 ANT

Building Enterprise Applications

[166]

Some of these project features automatically include other features that they depend
on. When you have added all the features, your screen should look like this:

Just click on Finish to create your Master Application Workspace.

Adding to source control
To place the Master Application under version control, simply choose Versioning,
Version Application and go through the Import to Subversion wizard (or similar if
you are using a different version control system).

Chapter 5

[167]

If you are using Subversion in a standard branches/tags/trunk layout, select the
trunk node and click on the button at the top-right to create a new remote folder
called Master as shown in the following screenshot:

Make sure your newly created remote folder is selected before you click on Next.
Then, go through the rest of the wizard to import your code.

The idea is that each application workspace goes into its own
folder under trunk.

Building Enterprise Applications

[168]

When the import completes, you should see a little extra icon at the bottomleft
of each node in the Application Navigator and a Subversion version number after
each element, as shown in the following screenshot:

If you point to an element in the Application Navigator, you will be told its
Subversion status (version, last user, unmodified/modified/new).

Creating the ADF library folder
Next, open a file explorer and change to the Master Workspace directory
(C:\adfessentials\mywork\DraMaster). Create a new folder called adfjars
here—this is the folder where the build/deployment manager will place all
approved ADF libraries.

If you are using TortoiseSVN, this directory should show up with a question mark
icon, indicating that it is not yet under source control. Right-click on the adfjars
directory and choose TortoiseSVN | Add as shown in the following screenshot:

Chapter 5

[169]

The icon on the folder changes to a plus sign, indicating that the folder is scheduled
to be added to Subversion. Right-click on the folder again and choose SVN Commit
to actually commit the new folder to the Subversion repository.

Creating the CommonCode workspace
The CommonCode workspace should contain the framework extension classes (you
saw how to build these in Chapter 2, Creating Business Services) as well as any other
utility classes that you develop for the application.

Creating the workspace
In JDeveloper, create a new application workspace of type Custom Application:

1.	 In step 1 of the wizard, give your workspace the name DraCommonCode. Place
it in directory C:\adfessentials\mywork\DraCommonCode and give it an
application package prefix com.adfessentials.dra.

2.	 In step 2, give the project the name CommonCode and include the ADF
Business Components feature (change it from Available to Selected). Java is
automatically added.

3.	 In step 3, set the Default Package to com.adfessentials.dra.common.

Use your application abbreviation in application workspace names,
because this allows you to find the application workspace folders
among other projects in your JDeveloper work directory. You don't
need the application abbreviation in project names, because these are
only used inside project workspaces.

Recreating the framework extension classes
In the CommonCode project, create four framework extension classes like you
saw in Chapter 2, Creating Business Services. Place all of them in the package com.
adfessentials.adf.framework:

•	 An EntityImpl class extending oracle.jbo.server.EntityImpl
•	 A ViewObjectImpl class extending oracle.jbo.server.ViewObjectImpl
•	 A ViewRowImpl class extending oracle.jbo.server.ViewRowImpl

Building Enterprise Applications

[170]

•	 An ApplicationModuleImpl class extending oracle.jbo.server.
ApplicationModuleImpl

•	 For all of these, just choose File | New | Java | Class, give a class name,
choose the class to extend, and deselect all the checkboxes in the Create Java
Class dialog.

Check your JDeveloper preferences
Before you start building ADF Business Components, check your JDeveloper
settings to make sure they match the framework extension classes you just built.
Under Tools | Preferences | ADF Business Components | Base Classes, check
that you have set the values matching the preceding package names, as shown in
the following screenshot:

These settings control which base class JDeveloper uses when building ADF Business
Components. We want JDeveloper to use the framework extension classes we have
just created in the CommonCode project.

Adding to source control
Add this project to source control like you did for the Master Application
(Versioning | Version Application). Remember to create a new remote folder under
trunk called CommonCode and import the workspace into this folder.

Chapter 5

[171]

Creating the ADF library
The final step is to create the ADF library. To do this, right-click on the CommonCode
project and choose Deploy | New Deployment Profile. Choose ADF Library JAR
File and deployment profile name adflibDraCommonCode.

Use your application abbreviation in deployment profiles because
these are used as ADF library filenames. It's nice to be able to tell
directly from the name which project a given library belongs to.

When you have clicked on OK to create your deployment profile, right-click on the
project again, click on Deploy, and choose your deployment profile. Choose Deploy
to ADF Library JAR File and then click on Finish.

You can see the progress of the deployment in the log window:

[10:13:13 AM] ---- Deployment started. ----

[10:13:13 AM] Target platform is Standard Java EE.

[10:13:13 AM] Running dependency analysis...

[10:13:13 AM] Building...

[10:13:14 AM] Deploying profile...

[10:13:15 AM] Wrote Archive Module to C:\adfessentials\mywork\
DraCommonCode\CommonCode\deploy\adflibDraCommonCode.jar

[10:13:15 AM] Elapsed time for deployment: 1 second

[10:13:15 AM] ---- Deployment finished. ----

After first deployment, you get a shortcut on the context menu to deploy to a JAR
file directly without going through the wizard. The deployment profile is stored
in your CommonCode project file, so you need to commit your changes. On the
Versioning menu, choose Commit Working Copy, provide an optional comment,
and click on OK.

To check the ADF library into Subversion, open a file explorer and find the deploy
directory inside the CommonCode project in the DraCommonCode workspace directory.
Right-click on this directory and choose TortoiseSVN | Add as we did earlier for the
adfjars directory. When you have added the directory, right-click on the deploy
folder and choose SVN Commit. You can use any other Subversion client to achieve
the same thing.

Building Enterprise Applications

[172]

Releasing the ADF library
The developer's task is done when the ADF library is built and placed under version
control, so now it's time for the build/deployment manager, whose tasks are:

1.	 Checking out the ADF library from the CommonCode/deploy directory.
2.	 Verifying it.
3.	 Copying it to the common adfjars directory in the DraMaster application

workspace and committing it to version control.

The amount of verification that the build/deployment manager does
depends on your development style and the level of formality in your
organization as mentioned previously.

For the example application, you are both developer and build/deployment
manager. Simply copy the adflibDraCommonCode.jar file from C:\
adfessentials\mywork\DraCommonCode\CommonCode\deploy to C:\
adfessentials\mywork\DraMaster\adfjars. Then, right-click on the .jar file in
the adfjars directory and choose TortoiseSVN | Add followed by SVN Commit.

Creating the CommonUI workspace
The CommonUI workspace must contain templates like the ones you created in
Chapter 3, Creating Task Flows and Pages.

Creating the workspace
Create a new application workspace of type Custom Application:

1.	 In step 1 of the wizard, give your workspace the name DraCommonUI,
directory C:\adfessentials\mywork\DraCommonUI, and application
package prefix com.adfessentials.dra.

2.	 In step 2, give the project the name CommonUI and include the ADF Faces and
ADF Page Flow features. Several other features are automatically added.

3.	 In step 3, set the Default Package to com.adfessentials.dra.common.ui.

Creating the templates
Create a task flow template like in Chapter 3, Creating Task Flows and Pages, by
choosing File | New | JSF/Facelets | ADF Task Flow Template. Give it the name
dra-task-flow-template and make sure Create with Page Fragments is checked.

Chapter 5

[173]

Next, create a page fragment template by choosing File | New | Web Tier | JSF/
Facelets and then ADF Page Template. Choose Facelets as document type and set
File Name to DraPageFragmentTemplate.jsf.

Items placed directly under public_html can be accessed
directly from a web browser when the application runs, but
items in the WEB-INF subdirectory cannot be accessed directly.
That's why pages go into public_html, but templates and other
elements that the users do not need to be able to access directly go
into the WEB-INF subdirectory.

Add \WEB-INF to the end of the directory name as shown in the
following screenshot:

Choose Use a Quick Start Layout and leave the default selection of One Column
(Stretched). Define a facet with the name fragmentContent. When the template
opens in the visual editor, drag a Facet Definition onto the center of the page
template and select the fragmentContent facet name.

Finally, create a page template by choosing File | New | Web Tier | JSF/Facelets
and then ADF Page Template. Choose Facelets as document type and give your
page template the filename DraPageTemplate.jsf. Again, add \WEB-INF to the end
of the directory. Choose Use a Quick Start Layout and select a one-column layout
with a narrow, locked top box and a large stretchable box. Refer back to Chapter 3,
Creating Task Flows and Pages for an illustration if needed. Define a facet with the
name pageContent.

Building Enterprise Applications

[174]

When the template opens, drag a Facet Definition onto the center of the page
template and select the facet name when prompted. Also, drag an Output Text
component onto the top part of the page template and use the Property Inspector
to set the value to DVD RENTAL App and set the style to Green, x-large, bold. Your
JDeveloper window should look something like this:

Your project should now contain the task flow template, the page fragment template,
and the page template.

JDeveloper uses the terms task flow and page flow
interchangeably. They mean the same.

Adding an ADF library
Your CommonUI workspace should include the output of the CommonCode
workspace. We don't have anything in CommonCode right now that CommonUI
needs, but later in the project we might add utility classes in CommonCode that
we want to use in CommonUI.

Chapter 5

[175]

To include the ADF library, we need to establish a File System connection as
described earlier in the chapter:

1.	 Open the Resource Palette from the View menu.
2.	 Click on the New button in the Resource Palette and choose New

Connection, File System.
3.	 Give your connection the name DraLib and point to the directory C:\

adfessentials\mywork\DraMaster\adfjars.
Then, open the File System node in the Resource Palette, open your connection, and
right-click on the adflibDraCommonCode library and choose Add to Project as shown
in the following screenshot:

Adding to source control
Add this workspace to source control like you did for CommonCode (Versioning |
Version Application). Remember to create a new remote folder under trunk called
CommonUI and import the workspace into this folder.

The ADF library (adflibCommonCode.jar) does not become part
of the CommonUI project. Only the reference to it is stored.

Creating and releasing the ADF library
Finally, create an ADF library called adflibDraCommonUI following the same
procedure as for CommonCode (new deployment profile and deploy).

Building Enterprise Applications

[176]

Add the deploy folder to Subversion and commit. Copy the adflibDraCommonUI.
jar file to C:\adfessentials\mywork\DraMaster\adfjars. Then, right-click on
the .jar file in the adfjars directory and choose TortoiseSVN | Add followed by
SVN Commit.

Creating the CommonModel workspace
The CommonModel workspace contains the Business Components that are common
to the whole application. This is typically the entity objects and any common
view objects used for lists of values across the application. In our simple example
application, the CommonModel workspace will contain only entity objects.

Creating the workspace
Create a new application workspace of type Custom Application:

1.	 In step 1 of the wizard, give your workspace the name DraCommonModel
and the application package prefix com.adfessentials.dra.

2.	 In step 2, give the project the name CommonModel and include the ADF
Business Components feature. Java is automatically added.

3.	 In step 3, set the Default Package to com.adfessentials.dra.common
.model.

Adding an ADF library
Your CommonModel workspace needs the framework extension classes in the
CommonCode workspace, so you need to find the adflibDraCommonCode library
in the Resource Palette and add it to your project. This allows the ADF Business
Components in CommonCode to make use of the framework extension classes that
have been packaged into that library.

Creating the entity objects
Create the four entity objects we need with the Business Components from Tables
wizard (File | New | Business Tier | ADF Business Components | Business
Components from Tables).

You first have to create a connection. Click on the green plus in the Initialize
Business Components Project dialog and set up a MySQL connection to the Sakila
database as we've done before. Use the connection name Sakila (port is 3306).
Choose SQL92 as the SQL Platform and chose Java as Data Type Map.

Chapter 5

[177]

In step 1 of the wizard, click on Query and select the customer, film, inventory,
and rental tables. Then, simply click on Finish to create the entity objects.

Like we did in Chapter 2, Creating Business Services, we need to change some of the
default datatypes to avoid the complexity of working with custom domains. This is
done on the Attributes subtab in the entity objects by right-clicking on the attribute
and choosing Change Type as shown in the following screenshot:

•	 In the Rental entity object, change the type for InventoryId to Integer
•	 In the Rilm entity object, change the type for the Description attribute

to String
•	 In the Film entity object, change the type for the ReleaseYear attribute

to Integer
•	 In the Film entity object, change the type for the Rating attribute to String
•	 In the Film entity object, delete the SpecialFeatures column

You might remember from Chapter 2, Creating Business Services that we did various
clean-up tasks (fixing associations and so on). For the sake of brevity, we'll skip
these here.

Adding to source control and creating the ADF
library
This procedure is like before:

1.	 Add the workspace to version control from within JDeveloper (create a new
remote folder called CommonModel in Subversion).

Building Enterprise Applications

[178]

2.	 Create an ADF library deployment profile called adflibDraCommonModel.
Remember to change the Connections setting to Connection Name Only.
Then, deploy to an ADF library JAR file.

3.	 If needed, add the deploy folder to Subversion and commit. Then, copy
the adflibDraCommonModel.jar file to DraMaster\adfjars, add it to
Subversion, and commit.

Creating the RentDvd subsystem workspace
Each subsystem will contain a number of bounded task flows with their associated
page fragments and managed beans as well as the underlying data structures in the
form of View objects.

For the RentDvd subsystem, this is:

•	 The rental flow
•	 One page fragment
•	 One managed bean
•	 One View object

All subsystems have dependencies on CommonCode, CommonModel, and
CommonUI, so they need to import these ADF libraries.

Creating the workspace
Create a new application workspace of type Fusion Web Application (ADF):

1.	 In step 1 of the wizard, give your workspace the name DraRentDvd
and the application package prefix com.adfessentials.dra.rentdvd.

2.	 In step 2, give your model project the name RentDvdModel.
3.	 In step 3, verify that the Default Package for the model is com.

adfessentials.dra.rentdvd.model.
4.	 In step 4, give your view/controller project the name RentDvdView.
5.	 In step 5, verify that the Default Package for the model is com.

adfessentials.dra.rentdvd.view.

Adding ADF libraries
Choose the RentDvdModel project and from the Resource Palette, add the libraries
adflibDraCommonCode and adflibDraCommonModel.

Chapter 5

[179]

Then, choose the RentDvdView project and add the libraries adflibDraCommonCode
and adflibDraCommonUI.

We are only adding references to the libraries, so even though we refer to
adflibCommonCode several times in this subsystem (and will do so in other
subsystems as well), there will only be one instance of the ADF library in the
finished application.

If any of these libraries don't show up in the Resource Palette,
right-click on the name of your File System connection and
choose Refresh from the context menu. If any are still missing,
you probably forgot to copy them from the deploy directory of
the subsystem into the adfjars directory of the DraMaster
application workspace.

Creating the view object
As you saw in Chapter 3, Creating Task Flows and Pages, the RentDvd page doesn't
actually present any data—it only creates new records programmatically through
the RentalBean. However, you still need a View object in order to allow the bean to
create records.

Because you have attached the CommonModel ADF library (that contains a database
connection name), your application already contains a database connection. You can
see this in the Application Navigator under Application Resources. However, the
connection might be marked with a small x as shown in the following screenshot:

Building Enterprise Applications

[180]

This indicates that there is something you need to fix. Because you chose in the
deployment profile to deploy the connection name only, some connection details
are missing. In order to work with the Sakila connection in this workspace, you
need to right-click on the connection and choose Properties. Provide the correct
parameters (Connection Type MySQL, username/password, port 3306, database
name sakila).

Then, select the RentDvdModel project and choose File | New | Business Tier | ADF
Business Components | View Object. Because this Model project has not been used
before, the SQL Platform and Data Type Map are not set yet. As elsewhere, choose
SQL92 and Java.

In the Create View Object wizard, give your view object the name RentalVO. In
step 2 of the wizard, you should see the entity object from your CommonModel
workspace in the Available box. Double-click on the Rental entity object to move it
to the Selected box as shown in the following screenshot:

In step 3, select all the attributes. Then, simply click on Finish to create the
view object.

Creating the application module
You also need an application module to contain an instance of this view object.
Still in the RentDvdModel project, choose File | New | Business Tier | ADF
Business Components | Application Module.

Give your application module the name RentDvdService and click on Next. In step
2 of the wizard, select the RentalVO view object to the right, correct the content of the
New View Instance field to RentalVO (it defaults to something like RentalVO1), and
click on the > button to move it to the right.

Chapter 5

[181]

The view object instances inside application modules by default get a
number added to their name because each view object can be included
several times in the application module (for example, with different
view criteria).

You can now just click on Finish to close the wizard and create the application module.

Creating the task flow and page fragment
To create the task flow, select your RentDvdView project and choose File | New
| JSF/Facelets | ADF Task Flow. Give it the name rent-dvd-flow and base it on
the dra-task-flow-template. Drag a view activity onto the task flow from the
Component Palette and give it the name rentDvd.

Double-click on the rentDvd activity to create the page fragment, choosing Facelets
and DraPageFragmentTemplate. On this page, first add a PanelFormLayout, then
add two fields to the panel form layout and set the labels to Customer ID and
Inventory ID. Finally, add a button to the footer facet of the panel form layout and
set the label to Register rental.

Adding a binding
Because we have not dropped anything on the page from the Data Controls
palette, JDeveloper has not created the page binding file yet. To create this,
right-click on the page and choose Go to Page Definition and say yes to create
the file.

On this page, click on the green plus in the Executables box and choose an
iterator binding. Select the RentalVO view object instance as shown in the
following screenshot:

Building Enterprise Applications

[182]

The bean logic will be referring to this iterator name.

Adding the business logic
You already saw how to implement the business logic in Chapter 4, Adding Business
Logic. The procedure involves:

•	 Creating a managed bean
•	 Creating properties in this bean with setters and getters and connecting these

with the items on the screen
•	 Connecting the button with a method that creates a new Rental record

Refer back to Chapter 4, Adding Business Logic for the details.

Remaining work
1.	 Add the application workspace to version control from within JDeveloper

(create a new remote folder called RentDvd in Subversion).
2.	 Create an ADF library deployment profile called adflibDraRentDvd in

the RentDvdView project. Remember to change the Connections setting to
Connection Name Only. Then, deploy to an ADF library JAR file.

You only need to create an ADF library from the view project in a
subsystem workspace. When you create a Fusion Web Application (ADF)
workspace, JDeveloper automatically adds the necessary dependency so
the View project will include the content of the Model project.

3.	 Add the deploy folder to Subversion and commit. Copy the
adflibDraRentDvd.jar file to DraMaster\adfjars and then also add it to
Subversion and commit.

If you want to test your subsystem, you will have to create a test page and drop the
rent-dvd-flow onto this page as a static region like we did in Chapter 3, Creating
Task Flows and Pages.

Creating the ReturnDvd subsystem
workspace
The ReturnDvd subsystem will contain the return flow with its two page fragments.
The procedure for building this in an enterprise setting is very similar to the way we
just built the RentDvd subsystem.

Chapter 5

[183]

Creating the workspace
Create a new application workspace of type Fusion Web Application (ADF):

1.	 In step 1 of the wizard, give your workspace the name DraReturnDvd and
the application package com.adfessentials.dra.returndvd.

2.	 In step 2, give your model project the name ReturnDvdModel.
3.	 In step 3, verify that the Default Package for the model is com.

adfessentials.dra.returndvd.model.
4.	 In step 4, give your view/controller project the name ReturnDvdView.
5.	 In step 5, verify that the Default Package for the model is com.

adfessentials.dra.returndvd.view.

Adding ADF libraries
Choose the ReturnDvdModel project, and from the Resource Palette, add the
libraries adflibDraCommonCode and adflibDraCommonModel.

Then, choose the ReturnDvdView project and add the libraries
adflibDraCommonCode and adflibDraCommonUI.

Creating the Customer view object
Like you did for the RentDvd subsystem, start by right-clicking on the Sakila
database connection (under Application Resources), choose Properties, and provide
the right values (Connection Type MySQL, username/password, port 3306,
database name sakila).

Then, select the ReturnDvdModel project and choose File | New, Business Tier | ADF
Business Components | View Object. Choose SQL Platform: SQL92 and Data Type
Map: Java.

In the Create View Object wizard, give your view object the name CustomerVO. In
step 2 of the wizard, select the customer entity object. In step 3, shuttle the attributes
FirstName, LastName, and Email to the Selected box. In step 4, you don't need to
change anything. In step 5, fill in the Order By field with last_name, first_name
and click on Finish to create the view object.

Also, add a view criterion to limit the view object to show only the customers
that match the search criteria in the first screen as described in Chapter 2, Creating
Business Services.

Building Enterprise Applications

[184]

Creating the Rental view object
To create the Rental view object, you need data from several entity objects. First,
select your model project and then File | New | Business Tier | ADF Business
Components | View Object.

In step 1 of the wizard, give your view object the name RentalVO.

In step 2, open the .entity node to the left and first shuttle the Rental entity object
to the right-hand box. Then, select the Inventory entity object and shuttle it to the
right. Check the association—it should be the one that contains "Inventory" and
"Rental" in the name; for example, FkRentalInventoryAssoc3.Inventory1. Your
screen should look like this:

Then, shuttle the Film entity object to the right and select the association that contains
"Inventory" and "Film" in the name; for example, FkInventoryFilmAssoc3.Film2.

We have to choose associations because the Business Components
from the Tables wizard build too many. In Chapter 2, Creating Business
Services, we saw a correct cleanup of these superfluous associations.

In step 3, shuttle the Title, ReleaseYear, and Rating attributes from the Film
entity object to the right as well as RentalDate, ReturnDate, and CustomerId from
the Rental entity object.

Just click on Next to skip step 4, and in step 5, fill in the Order By with rental_date.
Then, click on Finish to create the view object.

Chapter 5

[185]

Finally, add a view criterion to limit the Rental view object to show only
unreturned items. On the Query tab, add a new view criterion as above. Call it
UnreturnedCriteria and add a line for attribute ReturnDate with operator Is blank.

Creating a View Link
The two view objects must be connected via a View Link. To create this, select
the Model project and choose File | New | Business Tier | ADF Business
Components | View Link. In step 1 of the Create View Link wizard, give the
view link the name CustomerRentalLink. In step 2, set Cardinality to 0.1 to *,
expand the CustomerVO view object node on the left, and select the CustomerId
attribute. On the right, expand the RentalVO view object node and also select
the CustomerId attribute. Then, click on Add to add an attribute to the link. Your
screen should look like this:

Then, click on Next and then on Finish.

Creating an application module
You need to place instances of these two view objects in an application module in
order for the user interface to access them. Choose File | New | Business Tier |
ADF Business Components | Application Module to start the Create Application
Module wizard.

Building Enterprise Applications

[186]

In step 1 of the wizard, give the application module the name ReturnDvdService.

In step 2, expand the tree to see the two view objects.

First, select the CustomerVO view object and fill the New View Instance field with
the value CustomerSearchResult. Then, click on the > button to create a view object
instance in the right-hand box.

Next, select the node RentalVO via CustomerRentalLink, fill the New View
Instance field with the value RentalUnreturned, and click on >.

Finally, select the RentalVO view object that is not indented under CustomerVO, fill
in New View Instance with RentalVO, and click on>. Your screen should now look
like this:

Click on the CustomerSearchResult view object instance and click on the Edit
button and move the view criteria from the Available to the Selected box to apply
the view criteria to this view object instance in the application module.

View criteria applied to view object instances in an application module
will always be applied. If you want to use the view criteria sometimes
but not always, you can programmatically apply and remove it like you
saw in one of the code examples in Chapter 4 , Adding Business Logic

Similarly, edit the RentalUnreturned view object instance and select the
UnreturnedCriteria. Then, click on Finish to create the application module.

Chapter 5

[187]

If you have problems getting the naming and/or view criteria right, just
create the application module. Afterwards, you can open it and use the
Data Model tab to change view object instance names and view criteria.

Creating the task flow
In Chapter 3, Creating Task Flows and Pages, we built the return DVD task flow with
two views (page fragments) and one method call. When finished, it should look
like this:

Refer back to Chapter 3, Creating Task Flows and Pages for the details. Remember
to provide parameter values from PageFlowScope variables when adding the
ExecuteWithParams method call.

Creating the Customer Search Page Fragment
To build the customer search screen, double-click on the findCustomer view in the
return-dvd-flow task flow. Make sure DraPageFragmentTemplate is selected and
click on OK.

Choose a Panel Form Layout from the Component Palette and place four Input
Text components inside it. Use the Property Palette to provide labels and set the
Value property to the correct variable: #{pageFlowScope.searchCustomerId},
#{pageFlowScope.searchEmail}, #{pageFlowScope.searchFirstName}, or
#{pageFlowScope.searchLastName} (remember, the names are from when we
dropped the ExecuteWithParams element onto the task flow).

Building Enterprise Applications

[188]

Then, drop a Button component onto the footer facet of the panel form layout. Use
the Property Inspector to set the button Text property to Customer lookup and
choose executeQuery as the Action.

Creating the Rentals Page Fragment
Now double-click on the showRentals view in the task flow to create the page to
show the customer and his or her rentals page.

First, add a Panel Group Layout, setting the Layout property to Vertical. Also, set
the StyleClass property to AFStretchWidth.

Then, open the Data Controls panel in the Application Navigator and expand
the RentDvdServiceDataControl node to see CustomerSearchResult. Drag the
CustomerSearchResult element onto the page fragment and drop it as an ADF
Form. In the Edit Form Fields dialog, check the Include Navigation Controls
checkbox and click on OK.

Finally, expand the CustomerSearchResult node in the Data Controls panel and
drag the RentalUnreturned element onto the page below the buttons. In the Create
popup menu, choose Table | ADF Table. In the Edit Table Columns dialog, remove
the FilmId, RentalId, and ReturnDate columns. Check the checkbox Enable
Sorting and click on OK.

To fix the layout to use all available space, you need to select the af:table
component in the Structure panel. In the Property Inspector, set the StyleClass
property to AFStretchWidth in order to make the table fill all available space.
Then, select the af:table element, find the Id of the Title column (typically
something like c1), and set the ColumnStretching property of the table to the value
corresponding to the title column (column:c1). This makes the table allocate any
extra space on the screen to this column.

Registering a return
You can add a button and business logic to register the return of a rented DVD in the
same way as you saw in Chapter 4 , Adding Business Logic.

Remaining work
Carry out the following steps:

1.	 Add the application workspace to version control from within JDeveloper
(create a new remote folder called ReturnDvd in Subversion).

Chapter 5

[189]

2.	 Create an ADF library deployment profile called DraReturnDvd in the
ReturnDvdView project. Remember to change the Connections setting to
Connection Name Only. Then, deploy to an ADF library JAR file.

3.	 Add the deploy folder to Subversion and commit. Copy the
adflibDraReturnDvd.jar file to DraMaster\adfjars and then also add it
to Subversion and commit.

Again, if you want to test your subsystem, you will have to create a test page and
drop the return-dvd-flow task flow onto this page as a static region like before.

Finishing the Master Application Workspace
We've taken the RentalApp application apart. It has been split into five subsystems
that have each been deployed as their own ADF Library and we have copied these to
the adfjars directory in the master application. Now it's time to put the application
back together.

The master application will contain the two task flows from the RentDvd and
ReturnDvd subsystems and a master application page. In this example, we will
simply place the two task flows on separate tabs on a master page, but in a real-life
enterprise application, you will often use a menu and a dynamic region to change
between task flows.

Adding the ADF libraries
The DraMaster workspace needs all five ADF Libraries—simply add them to the
project from the Resource Palette.

Fix the Sakila database connection as you saw earlier in the chapter.

Because you deploy only connection names to your ADF libraries, the
user of the libraries must define the Sakila connection details.

Create the master page
An ADF enterprise application will contain many bounded task flows, each
containing many page fragments—but it will have few pages, possibly only one.
You need one page for every direct access point your application needs—if you want
three different entry points to the application with three different URLs, you need
three pages.

Building Enterprise Applications

[190]

In the DVD rental application in this book, we will have one page with two tabs for
the two taskflows. Create a page with the name DvdRental and choose to base it on
the rentalPageTemplate. Set the Title property of the af:document element to DVD
Rental Application.

Drop a Panel Tabbed component onto the content facet of the page. This
component automatically adds the first tab, which is af:showDetailItem. Set
the Text property for the tab to Rental and drop the rent-dvd-flow (from the
adflibDraRentDvd on the Resource Palette) on the tab as a static region.

Drop another ShowDetailItem onto the af:panelTabbed component and set the
Text property to Return. Drop the return-dvd-flow from adflibDraReturnDvd
onto the new tab as a static region.

Your master application is now ready to run. Either run it in the built-in WebLogic
server or deploy it to your GlassFish server to test it out.

Summary
In this chapter, we have re-built the application that we developed in the last three
chapters, but this time in a proper, scalable structure using separate workspaces
for separate parts of the application. Based on ADF libraries built on the three
foundation workspaces, we have developed two separate subsystems and deployed
these as ADF libraries as well.

Finally, we built a master application putting these libraries together to a finished
application. In this way, you can build any size of system by splitting it up in various
task flows and subsystems.

If you followed along in JDeveloper while reading this chapter, you will probably
have experienced a thing or two that did not work the first time. To find errors,
logging and debugging is an important part of application development. That is
the topic of Chapter 6 , Debugging ADF Applications.

Debugging ADF Applications
Naturally, your applications work the first time. But in case you want to help your
friends and colleagues, who do not write code as flawlessly as you, this chapter
describes how to find out what their application is doing using the ADF logging
features and the JDeveloper debugging support.

ADF logging
Beginner programmers tend to litter their code with System.out.println()
calls because that's the print statement used in the ubiquitous "Hello World"
examples. As programmers gain experience, they tire of having to remove all of
these statements before putting code into production and start using a proper
logging framework.

There are several options for logging in Java—some of the most well-known are
log4j and Logback. However, in an ADF application, it is recommended to use
the ADFLogger.

The ADFLogger can write its log output in Oracle Diagnostics
Logging (ODL) format that can be read and analyzed by both the
developer (in JDeveloper) and by a WebLogic administrator (using
Oracle Enterprise Manager Grid Control). If you are running your
application in GlassFish, your operations people do not have grid
control. However, since ADFLogger offers all necessary logging
functionality, it makes sense to use this logging framework just in case
your application will some day be deployed to a WebLogic server.

Debugging ADF Applications

[192]

Creating a logger
In every code element in your application, you create an instance of the ADFLogger
class with the ADFLogger.createADFLogger() method. This method takes a class as a
parameter—you will normally pass it the class that you are placing the logger inside:

package com.vesterli.demo.adf.xx.view.beans;

public TestBean {
 private final ADFLogger logger =
 ADFLogger.createADFLogger(TestBean.class);

 public void TestBean() {
 }
}

By passing in the class itself, you build a hierarchy of loggers, each with the same
name as the class. This allows you to control the logging level for individual classes
so you can log with great detail in the classes you are interested in and set a less
detailed logging level for other classes.

Adding log statements
The actual logging is done by calling methods on the ADFLogger object like this:

public void MyMethod() {
 //do stuff
 logger.fine("Just did stuff");
 try {
 // do risky stuff
 logger.finer("Doing risky stuff");
 } catch (Exception e) {
 logger.warning("Something went wrong");
 logger.warning(e);
 }
}

You select a log level when you write your log statements. The available levels (in
decreasing order of severity) are:

•	 SEVERE

•	 WARNING

•	 INFO

•	 CONFIG

Chapter 6

[193]

•	 FINE

•	 FINER

•	 FINEST

In every project, your developer guidelines should define how you decide to use the
logging levels to ensure uniform usage throughout the code.

Write a simple set of developer guidelines, even if you are the only
developer working on the application. It will be useful if somebody
else takes over the application later. It will also be useful if you have to
go back to the application yourself after several years.

An example of some logging guidelines is illustrated in the following table:

Log level Usage
SEVERE Critical errors that prevent the application from

continuing. Set up monitoring of your logfiles so that
the operational staff are informed if this kind of error
shows up in the logs.

WARNING Warnings that indicate misconfigurations, missing
data, or failures from other components or external
systems. Use these in catch clauses for errors you do
not expect; for example, SQLException. Exceptions
that are expected and handled (for example, if
InvalidNumberException can be handled by
substituting a zero value) should not produce
WARNING logs.

INFO Application logging intended for business users.
CONFIG Information about configurations read from property

files, databases, or other sources. Information about
initialization of classes.

FINE Information about method calls. Normally used only
once or twice in a method when entering (showing
parameters received) and/or leaving (showing the
return value).

FINER More detailed logging. This is allowed several times
in a method.

FINEST Most detailed log level. Logging inside loops should
be this level.

Debugging ADF Applications

[194]

Business logging
When designing the log messages, keep in mind who you are writing for. Most
developers write only for other developers, but your application should also log
information for business users:

•	 Messages for developers can refer to internal variable values and can be very
technical. These messages will often refer to system-generated ID values that
make sense to a developer looking something up in the database.

•	 Messages to business users should use terms they recognize and the values
actually displayed in the user interface. Do not show internal system-
generated keys to business users—instead, use values that a user can use to
look up data within the application.

Developer messages might look like this:

ProcessInvoice() called: InvoiceId=8765123, firstInvoice=true
InvoiceLines.count=0, break

A business message would look more like this:

Started processing invoice 667788
Processing aborted, no invoice lines

If you reserve one log level (for example, INFO) for business messages, you can allow
application "super users" to see the logfiles in case they want to investigate how a
specific business item was processed by the system.

JDeveloper shortcuts
Since you will be (or should be) writing a lot of log statements in your code, it makes
sense to use the JDeveloper code template feature to create shortcuts for creating and
using loggers.

Chapter 6

[195]

To add a code template, navigate to Tools | Preferences | Code Editor | Code
Templates. The Code Templates dialog appears as shown in the following screenshot:

Click on the green plus icon to add a new template. To create a template for adding
a logger, define Shortcut as aldef, set Context to Java Type Members, and fill in
Description with something like Create a new ADF logger.

Fill in the tabs as follows:

1.	 On the Code tab, write private final ADFLogger logger = ADFLogger.
createADFLogger($classname$.class);.

2.	 On the Imports tab, write oracle.adf.share.logging.ADFLogger.

Debugging ADF Applications

[196]

3.	 On the Variables tab, you will see a classname variable (because you used it
on the Code tab). Set the Type value for this to Class Name and remove the
checkmark in the Editable column. Your screen should look like this:

Now place the cursor at the top of your class definition, write aldef, and press Ctrl
+ Enter. JDeveloper will add the content of the Code tab for this code template at
the cursor and add the content of the Imports tab at the top of the class with the
other inserts.

Use the same dialog box to add shortcuts for the logging statements you need. For
example, to log at the FINEST level, you could add a logger with shortcut alf3 and
the code logger.finest("log");. In this case, the default variable handling (to
place the cursor at the variable) is OK, so you do not need to change anything on the
Variables tab. Your code template screen should look like this:

When you need a log statement of level FINEST, you can now place the cursor where
you want the statement, write alf3, and press Ctrl + Enter. JDeveloper adds the log
statement from the Code tab and places the cursor at the variable definition (between
the quotes) so you can write your log statement.

Chapter 6

[197]

Oracle Product Manager Duncan Mills has created a comprehensive
set of logging shortcuts that you can download and install.
See http://blogs.oracle.com/groundside/entry/
adventures_in_adf_logging_part1.

Reading the logs
As your application runs in the built-in WebLogic server, you will see the log output
in the Log window (by default at the bottom of the JDeveloper window).

ADF logging is controlled by the logging.xml file. JDeveloper offers a nice interface
for managing this file for the built-in WebLogic server. You can access this from the
Log window by clicking on Actions (in the top-right corner of the log window) and
choosing Configure Oracle Diagnostic Logging as shown in the following screenshot:

Note that this menu item only appears when the built-in WebLogic server is running.

Debugging ADF Applications

[198]

The logging.xml file opens in a dedicated log level editor that allows you to navigate
the hierarchy of loggers and set their levels as shown in the following screenshot:

There are two types of loggers:

•	 Transient loggers are created when a class is instantiated and disappear
again when the class is no longer used

•	 Persistent loggers are explicitly defined and permanent

You should create a persistent logger for your application with a logger name that
corresponds to the Java package root of your application. So, if your company base
package is com.company and your application abbreviation is dra, create a base
logger called com.company.dra. This will control the logging for all classes in
your application.

You can define more specific loggers as needed; for instance, for individual
subsystems. Because of the hierarchy, you can have your com.company.dra logger
set to INFO and have a subpackage, com.company.dra.rentdvd, set to FINE to see
more detailed logging from this subsystem.

Chapter 6

[199]

Logging SQL statements
If you want to see the SQL statements that ADF is sending to
your database, create a new persistent logger for oracle.jbo
and set it to FINEST. This will produce a lot of logging, and
among it will be the actual SQL statements and bind variable
values. Search the log for BaseSQLBuilderImpl to see all the
SQL your application uses.

Logging in GlassFish
When you deploy your application to GlassFish, your log statements are written
to the server.log file. You can view this file from the GlassFish admin web page
(by default running on port 4848) by navigating to Server | View Log Files, or
you can just look at the file itself—it's found under your domain, for example, C:\
adfessentials\glassfish3\glassfish\domains\domain1\logs\server.log.

The log lines are rather long—if you want a different format, you can
create your own formatter class as described by user Kawo on the site
Stack Overflow:
http://stackoverflow.com/questions/9609380/glassfish-
3-how-do-you-change-the-default-logging-format

You can also redirect your log output to a syslog service as described
by Markus Eisele on his blog:
http://blog.eisele.net/2012/07/glassfish-operations-
log-notifications.html

GlassFish logging can be controlled by changing the logging.properties file in the
config directory in your domain, for example, C:\adfessentials\glassfish3\
glassfish\domains\domain1\config\logging.properties. This file contains
three sections:

•	 A general header (all comment)
•	 Properties that apply to the whole domain
•	 Settings for individual loggers

Debugging ADF Applications

[200]

Controlling domain logging
In the section on the domain, you will find general settings that apply to all logging
in the domain. Some values you might want to change are:

•	 com.sun.enterprise.server.logging.GFFileHandler.file allows you
to change the logfile location and name

•	 com.sun.enterprise.server.logging.GFFileHandler.
rotationTimeLimitInMinutes allows you to rotate the logfiles (close the
current file and start a new one) after a specific number of minutes to avoid
the logfiles becoming unmanageably large

•	 com.sun.enterprise.server.logging.GFFileHandler.
rotationLimitInBytes allows you to rotate the logfiles when they reach a
specific size

Controlling individual loggers
In the last section, you find lines of the format <class>.level=<LEVEL>, for
example, javax.enterprise.system.level=INFO. Add your own loggers to
this section to control how much of the logging in your application you want in
the logfile.

If you application has the base URL com.company.rental, you can add the
following statement to see all log statements:

com.company.rental.level=FINEST

You can choose any of the log levels: SEVERE, WARNING, INFO, CONFIG, FINE, FINER,
or FINEST. You can also set different log levels for different loggers, for example:

com.company.rental.level=INFO

com.company.rental.view.beans.RentalBean.level=FINEST

This will provide INFO logging for your entire application but FINEST logging for
your RentalBean logger.

You can also control GlassFish logging with the asadmin
command-line tool as described in the Oracle GlassFish Server 3.1
Administration Guide:
http://docs.oracle.com/cd/E18930_01/html/821-2416/
gklmn.html

Chapter 6

[201]

Debugging in JDeveloper
As you have already noticed, deploying the application on the built-in WebLogic
server is much faster than deploying it to GlassFish. That's why you'll want to
develop and debug your application on WebLogic and occasionally deploy it
for testing on GlassFish. In theory, your ADF Essentials application is just a JEE
application like any other—so, if it runs on WebLogic, it should run on GlassFish. In
practice, you'll want to make sure it does run on GlassFish.

Automated deployment

It is a good idea to develop an automated build of the application. If
you combine this with a continuous integration tool like Hudson/
Jenkins, you can set up an automatic build and deploy to GlassFish
to run once a day. That will enable you to check that the code you
develop on WebLogic can also be deployed on GlassFish. If you add
some simple UI testing to your automated build script, you can even
verify that your code actually runs on GlassFish.

Debugging code
In order to debug your application, you must first place one or more breakpoints in
your code by left-clicking in the left margin or right-clicking and choosing Toggle
Breakpoint as shown in the following screenshot:

Now start your web page by right-clicking on it and choosing Debug (instead of
Run). If the built-in WebLogic server is running in "regular" mode, you will be asked
if you want to restart the server in "debug" mode or vice versa.

Debugging ADF Applications

[202]

When the built-in WebLogic server is running, it is in either regular or
debug mode. Your application runs faster in regular mode, so this is
what you should be using during most of development. Only switch
to debug mode if you need to track down complicated issues that
cannot be resolved through the use of log statements alone.

Remember that you cannot run task flows based on page fragments directly. You
will have to build a test page and drop your bounded task flow onto the page as a
static region.

Upon reaching the breakpoint, execution stops and the cursor is placed on the code
line that has the breakpoint. If your breakpoint is placed before the page is rendered
to the browser, your browser will seem stuck retrieving the page. The JDeveloper
toolbar and the Run menu contain the normal functions, listed as follows, that you
expect from a debugger:

•	 Step Over
•	 Step Into
•	 Step Out
•	 Step to End
•	 Resume

The icons are placed in the JDeveloper toolbar next to the Run/Debug/Terminate
buttons and look like this:

Additionally, you can place the cursor further down in the code, right-click, and
choose Run to Cursor (or choose Run to Cursor from the Run menu). This can be
useful, for example, when you have single-stepped through the first couple of loop
iterations and want to continue debugging after the loop.

In the Log window, you will see several new tabs:

•	 The Breakpoints tab shows all breakpoints in the current
application workspace.

•	 The Smart Data tab attempts to make an intelligent guess and shows you
only the variables that JDeveloper thinks will be interesting to you at this
specific point in the execution. It looks like this:

Chapter 6

[203]

•	 The Data tab shows all variables.
•	 The Watch tab allows you to define expressions to watch. Some of the ADF

business component classes are rather complicated to read on the Data tab,
so it is often easier to set up a watch using an object and a method. Either
right-click inside the Watch tab or right-click on a variable in the code and
choose Watch from the context menu.

•	 The ADF Data tab shows you the values that are stored in various
memory scopes.

•	 The EL Evaluator tab allows you to evaluate Expression Language
expressions using the #{xxx} syntax.

Understanding the ADF lifecycle
As you gain experience with ADF development, at some point in time, you will
probably want to learn about the ADF lifecycle. In all JavaServer Faces (JSF)
applications, processing of a request that arrives at the server from a browser goes
through some very specific phases. In a standard JSF application, this lifecycle
includes six phases—in an ADF application, there are additional ADF-specific
phases as well.

To learn about the ADF lifecycle, refer to the Oracle Fusion
Middleware Web User Interface Developer's Guide for Oracle
Application Development Framework. In the guide for JDeveloper
11.1.2.4.0, the lifecycle is described in Chapter 5, Building Enterprise
Applications. You can find this at http://docs.oracle.com/cd/
E37975_01/web.111240/e16181/af_lifecycle.htm.

Debugging ADF Applications

[204]

While you are debugging, you can follow the request processing through the various
phases in the Structure panel. This panel is normally shown in the bottom-left corner
of the JDeveloper window and shows the structure of whatever you have active (code
classes, JSF pages, and so on) on the first tab. However, while debugging, it also shows
the call stack on the Stack tab and the structure of the ADF page running on the ADF
Structure tab. At the top of the ADF Structure tab, it also shows which ADF lifecycle
phase is currently active (for example, JSF Invoke Application). The ADF Structure
tab might look like this when your application is stopped at a breakpoint:

You can click on the small button to the right of the current lifecycle
phase to set a breakpoint at a specific phase. Once you have achieved a
good understanding of the JSF and ADF lifecycle, this feature might be
useful to you.

Debugging task flows
Sometimes, you might need to track down an issue, but you are not quite sure
in which class the problem lies. In this case, you can place breakpoints in your
task flows.

Chapter 6

[205]

To place a breakpoint on any task flow activity, right-click on it and choose Toggle
Breakpoint. This can be done on all activities, including views, method calls, and
task flow invocations. A breakpoint is shown with a red dot, like the one shown in
the following screenshot:

When you run your application and it stops at a breakpoint, the Data and Smart Data
tabs will not show variable values because you are not actually executing any Java
code at that moment. Instead, they will show an activityBreakpointDetail item
with details about the breakpoint where execution is halted. Additionally, you can use
the EL Evaluator tab to evaluate EL expressions. This can be useful to determine which
parameters are passed into and returned from elements of the task flow.

Debugging ADF Applications

[206]

When your application stops at a task flow breakpoint, it might look like this:

Debugging into ADF libraries
If you are building your application in a proper enterprise application structure
as described in Chapter 5, Building Enterprise Applications, you will be using ADF
libraries extensively. So, how do you follow execution into ADF libraries?

The solution is to deploy the source code of your subsystems as separate JAR files
and include these source JAR files in your application. The procedure for creating
a source JAR file is very similar to how you created an ADF library:

1.	 Create a directory to hold your source JAR files.
2.	 Create new deployment profiles in your subsystems and deploy them.
3.	 Include the source JAR files in your master project.

Creating a source directory
You can create the directory anywhere, but it is a good idea to place it in your master
project. Call it something like sourcejars to indicate its use.

Chapter 6

[207]

Creating a source JAR file
For each project that you want to debug into, choose Project Properties,
Deployment to get to the deployment dialog. From here, click on New to create
a new deployment profile, choose JAR File as Profile Type, and give it a name
that contains your subsystem name (for example, sourceDraRentDvd). In the JAR
Deployment Profile Properties dialog, first select the JAR Options node to the
right and correct the content of the JAR File field. Initially, it will contain a path
to your project deploy directory—you want to change this so the finished JAR file
is placed directly in your sourcejars directory. An example of a corrected value
would be C:\JDeveloper\mywork\sourcejars\sourceDraRentDvd. Now, expand
File Groups and then Project Output. Under Contributors, make sure that only
Project Source Path is checked, as shown in the following screenshot:

When you have created the deployment profile, you can right-click on your project
and choose to deploy to the source deployment profile. This creates a JAR file in the
location you specified.

Debugging ADF Applications

[208]

Including the source in the master application
Now you need to include the source JAR file in the master application. To do this,
open the master application, right-click on the master project, and choose Project
Properties | Libraries and Classpath. Click on Add Library and then on New
to create a new library. Give your source library a name that contains the project
abbreviation, for example, DraSource. Set Location to Project. In the Create Library
dialog, select the Source Path node and then click on Add Entry. In the Select Path
Entry dialog, navigate to your sourcejars directory and select your source JAR files
(you can Ctrl + click to select multiple files). Your dialog should look like the one
shown in the following screenshot:

Placing a breakpoint in an ADF library
In order to set a breakpoint in an ADF library that you have attached to a project,
you need to change the display options for the Application Navigator. In your
master project, find the Navigator Display Options button next to Projects at the
top of the navigator, as shown in the following screenshot:

Chapter 6

[209]

Click on the Navigator Display Options button and choose Show Libraries as
shown in the following screenshot:

You will now see a lot of new nodes in the Application Navigator—all of the
libraries your application is using. These are the actual JAR files that JDeveloper
includes in your project as a consequence of your technology choices for the project,
as well as the source JAR you added yourself.

If you scroll down, you will see the library you added (for example, DraSource), and
if you click on the plus sign, you will see the combined Java package hierarchy from
all of the source JAR files you included in your library. Navigate down the hierarchy
to the class where you want to set the breakpoint, open it, and set the breakpoint like
you would for a local class (right-click in the left margin).

Now, when you run your application in debug mode, execution will stop inside your
ADF library at the breakpoint. From here, you can debug the code from the library
just like local code in the project with Step Into | Step Over and the various tabs for
displaying data and application state.

While you are debugging and making changes to the code, make sure
to deploy your subsystem both as an ADF library and as a source JAR.
If you place a breakpoint in a source JAR file that does not correspond
to the actual ADF library being executed, the cursor placement in the
source code might be off.

Debugging ADF Applications

[210]

Debugging into the ADF source code
As you are stepping through your code with Step Into, you will eventually reach a
point where you see the dialog shown in the following screenshot:

This means that code execution has moved into the ADF base classes delivered by
Oracle in the ADF Essentials libraries. These libraries contain only the compiled
classes, so the debugger can't show you the source code.

While ADF Essentials is free (in the "no-cost" meaning of the word), it is not open
source. You can't just download the source code from OTN or elsewhere.

However, you can purchase a support contract for ADF Essentials from Oracle. At
the time of writing, this price was USD 1,250 per year per server. Note the cost is per
server and not per CPU as other Oracle prices. If you purchase this support contract,
you get a Customer Support Identifier that entitles you to open service requests with
Oracle support.

That's fine if you have an issue with a feature that doesn't work the way you expect it
to or a component that misbehaves in a specific browser. But equally important is the
fact that the support contract entitles you to receive a copy of the ADF source code.
In order to receive it, you must open a service request requesting the source code for
a specific version of ADF. You will be given some paperwork to complete that lays
out the restrictions on what you can do with the code (you can't publish it, among
other things). Once you have done the paperwork and returned it to Oracle, you will
be given access to download the source code, normally within a couple of days.

Chapter 6

[211]

Once you have the source code, you need to make it available to JDeveloper. This
is explained in one of the ADF Essentials video demonstrations available on the
Oracle Technology Network and YouTube. You can search on Google for "how to
implement logging in an ADF application" or go directly to http://www.youtube.
com/watch?v=FxA2Fs0zhAM.

Summary
You have seen how to use ADF logging and JDeveloper debugging features to find
out in detail what your application is doing. With this knowledge, you should be
able to ensure that your application has the required functionality.

In the next chapter, we will see how you control who can use the application by
adding security to your ADF Essentials application.

Securing an ADF Essentials
Application

You have developed the functionality of your ADF Essentials application, but you
probably don't want every feature to be available to everybody. To ensure that
only the right users get access to the right information, you need authentication (to
identify the user of the application) and authorization (to control what each user is
allowed to do).

If you are running the full version of ADF on WebLogic, the ADF framework offers
a comprehensive set of security features. However, since we are running ADF
Essentials on GlassFish, we will need another solution.

The Java technology stack offers the Java Authentication and Authorization Service
(JAAS), but this solution is rather complex and not very popular among developers.
Instead, in this chapter, we will implement Apache Shiro security for our application.

Apache Shiro basics
Shiro is a project with a long history—it started life as JSecurity back in 2003
when there were really few options for Java security. It provides four main
pieces of functionality:

•	 Authentication
•	 Authorization
•	 Cryptography
•	 Session management

Securing an ADF Essentials Application

[214]

We'll be using the authentication part (determining who the user is) and the
authorization part (determining what the user can do). For the purposes of this
book, we will not be using the cryptography (encrypting and decrypting data)
or the session management (we rely on standard JSF and ADF functionality for
our session data).

Getting the software
You can download the Shiro software from http://shiro.apache.org. You'll
want the Latest Stable Release, Binary Distribution. Download the shiro-core
and shiro-web JAR files.

Because you don't want your application to depend on a directory outside the
application structure, create a directory called extjars in the application directory
and place your JAR files there.

The Shiro code uses Simple Logging Façade for Java (SLF4J), so you also need to
download SLF4J from http://www.slf4j.org. Download the ZIP file, unpack it
somewhere, and copy the slf4j-api-1.7.5.jar and slf4j-simple-1.7.5.jar
files to the same directory. If a newer version than 1.7.5 is available by the time you
read this, use that instead.

Installing the packages in your application
To use Shiro security in your application, you need to include the JAR files in
your project. To do this, choose Project Properties for your View project and then
Libraries and Classpath. Click on Add Library and then New. Give your library
the name Shiro and choose Location as Project. Then select the Class Path node
in the tree, click on Add Entry, and add the four JAR files. Remember to check the
Deployed by Default checkbox as shown in the following screenshot:

Chapter 7

[215]

The Deployed by Default checkbox indicates that these libraries should be deployed
with the application. If you don't select this box, your application EAR file gets
smaller, but you have to ensure that the libraries are available on each server you
deploy it to.

Click on OK several times to return to the application.

Now we have the JAR files ready for use in our application, but we also need to
actually configure the application to use them. So, we add a servlet filter so that
every request for a page of our application is passed through Shiro. This allows
Shiro to perform security evaluation before the page is shown to the user.

To add this filter, we change the web.xml file. You can find this file in your View
project under Web Content | WEB-INF. When you double-click on the file,
JDeveloper opens it in a specialized editor that allows you to change all settings
through user-friendly dialog boxes. In this case, however, we will use the Source
view to work directly with the file. Click on the Source tab at the bottom of the web.
xml window and insert the following code:

<listener>
 <listener-class>
 org.apache.shiro.web.env.EnvironmentLoaderListener
 </listener-class>
</listener>
…
<filter>
 <filter-name>shiroFilter</filter-name>
 <filter-class>org.apache.shiro.web.servlet.ShiroFilter
 </filter-class>
</filter>
<filter-mapping>
 <filter-name>shiroFilter</filter-name>
 <url-pattern>/*</url-pattern>
 <dispatcher>REQUEST</dispatcher>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>INCLUDE</dispatcher>
 <dispatcher>ERROR</dispatcher>
</filter-mapping>

The <listener> element goes with the other <listener> elements, and the filter/
filter-mapping block goes between the last existing <filter> and the first existing
<filter-mapping>.

Securing an ADF Essentials Application

[216]

The EnvironmentLoaderListener initializes a Shiro
WebEnvironment instance that contains everything that Shiro
needs to operate. The ShiroFilter instance intercepts all web
requests and uses the WebEnvironment instance to apply security.

By placing your Shiro filter mapping first in the file, this filter is applied first at
runtime. There is no need to apply the other filters if Shiro figures out that the user
doesn't have access anyway.

You can remove the JpsFilter (both the filter and the filter-mapping).
This filter is used for Oracle Platform Security Services (OPSS), which
we will not be using.

Configuring your application for Shiro
Before we secure our application, we need to know which URLs to secure. You might
already have noticed that all of your pages get a URL that starts with the Java EE
Web Context Root (that you can set under Project Properties | Java EE Application),
followed by /faces/, followed by the page name. All ADF pages are rendered by
the Faces servlet, so they will always have the /faces/ part. This means that if you
select to secure /faces, all ADF pages in your application are protected.

The URL part /faces/ is just a convention for JSF applications. It is
defined in web.xml, but you can change it if you want.

Shiro is configured through the use of a Shiro INI configuration file. Create a new file
(item type File in the New dialog), call it shiro.ini, and place it in the /WEB-INF
directory of the view project.

The /WEB-INF location is one of the default places Shiro looks for
configuration information. You can also place the file elsewhere
as long as you tell Shiro where to look for it. Refer to the Shiro
documentation for information about this (http://shiro.
apache.org/web.html).

We'll start with the simplest possible INI file:

[users]
user1 = welcome1

[urls]
/faces/** = authcBasic

Chapter 7

[217]

This defines one user as user1 with the password welcome1 and
secures all URLs starting with /faces with the authcBasic filter.

Deploy your application to the GlassFish server and run it. The browser will now
prompt you for a username and password when you try to access any ADF page as
shown in the following screenshot:

You are getting the ugly gray dialog box that is standard for the browser because the
authcBasic instruction tells Shiro to use basic authentication. This is an old-fashioned
way of doing security back from the Web Stone Age, but because it only uses features
from the HTTP protocol, it is very easy to set up.

Doesn't (quite) work in WebLogic
If you don't have the patience to wait for a JDeveloper GlassFish
deployment, you might be tempted to just run the application in the
built-in WebLogic server. That sort of works, but because WebLogic
also has security features, you'll be prompted for a username and
password twice. The first time, the dialog will look as the preceding
screenshot ("The site says: application") and will require a username/
password from your shiro.ini file. The second time, the dialog asks
for a WebLogic username/password, and the dialog will include "The
site says: WebLogic Server". In this second dialog, you will have to
provide a valid WebLogic user (for example, the administrator user,
often called weblogic).

Advanced Shiro
Naturally, we don't want the user to be subjected to an old-fashioned browser login
prompt— we want to present the user with a nice login page that matches the rest of
the application. For that purpose, we need form-based authentication.

Securing an ADF Essentials Application

[218]

Additionally, we don't want our users stored in a configuration file. We could store
them in an LDAP server, but that's another moving part. So, to keep it simple, we
will use database tables in our existing Sakila connection to store our users, roles,
and permissions.

There are quite a few elements and arcane Shiro incantations required to make the
whole thing work. This chapter cannot describe everything in detail—refer to the
Shiro documentation and the following two blog posts for more information:

•	 http://balusc.blogspot.sg/2013/01/apache-shiro-is-it-ready-for-
java-ee-6.html (by Bauke Scholtz)

•	 http://www.jobinesh.com/2013/02/securing-your-adf-applications-
using.html (by Jobinesh Purushothaman)

User database
Users and roles belong to realms, and Shiro is prepared for database authorization
and authentication through the pre-built JdbcRealm. You can see in the
documentation that this requires three queries:

•	 Get the password for a specific username
•	 Get all role names for a specific username
•	 Get all permissions for a specific role name

There are many ways of implementing such a security database. One example is to
have tables of users, roles, and permissions like this:

Chapter 7

[219]

From within JDeveloper, you can open the Database Navigator (from the View
menu), open the Sakila database connection in your application, and then run a
script like the following:

create table users (
id int primary key auto_increment,
user_name varchar(255) unique not null,
password varchar(255) not null);

create table roles (
id int primary key auto_increment,
role varchar(255) unique not null);

create table user_roles (
user_id int not null,
role_id int not null,
foreign key (user_id) references users(id),
foreign key (role_id) references roles(id),
primary key (user_id, role_id));

create table permissions (
id int primary key auto_increment,
permission varchar(255) unique not null);

create table role_permissions (
role_id int not null,
perm_id int not null,
foreign key (role_id) references roles(id),
foreign key (perm_id) references permissions(id),
primary key (role_id, perm_id));

This structure allows each user to have one or more roles, and each role to be
assigned to one or more users. Similarly, each role can be associated with one or
more permissions, and each permission can be part of one or more roles.

Form-based authentication
If we want our own login page, we need to build it. In other contexts, it is possible to
use a simple HTML-based login page with Shiro, but for an ADF application where
we use JSF, we need to create a JSF login page and a backing bean to perform the
actual login operations.

Securing an ADF Essentials Application

[220]

The page needs:

•	 A username field
•	 A password field
•	 A login button

The fields need to be mapped to attributes in the backing bean, and the bean also
needs to provide a login method mapped to the button. Additionally, it would be
nice if the bean could also offer a logout function.

The login page
Create a new JSF page called login.jsf (document type Facelets, based on your
page template). Drop a PanelFormLayout on the page and then drop two InputText
components on it. Place a button in the bottom facet of the PanelFormLayout. Set
the labels, and for the password field, set the Secret property to true so that the
characters you type in the password field are not shown. Your login screen should
look like this:

The login bean
Double-click on the Login button and click on New in the Bind Action Property
dialog to create a new managed bean. Call it LoginBean, place it in a .view.beans
package under your project root package, and choose backingBean as the scope.
Click on OK and set the Method name to login().

In the bean, we need attributes to map to the fields on the screen like you saw in
Chapter 4, Adding Business Logic. In the code editor, create the attributes userName
and password of type String and generate accessors. Set the Value property for
the Username input text field in the login page to #{backingBeanScope.LoginBean.
userName} and the Value for the Password field to #{backingBeanScope.
LoginBean.password}.

Chapter 7

[221]

The login method
Now you need to add login functionality to the login() method in the bean. Open
the LoginBean class, define a logger object and a HOME_URL constant at the top,
and provide content for the login() method:

…
public class LoginBean
 private ADFLogger logger =
 ADFLogger.createADFLogger(LoginBean.class);
 private final String HOME_URL = "/welcome.jsf";
…
 public String login() {
 try {
 // attempt login
 SecurityUtils.getSubject().login(
 new UsernamePasswordToken(userName, password));
 // retrieve the saved request
 HttpServletRequest request =
 (HttpServletRequest)(FacesContext.getCurrentInstance().
 getExternalContext().getRequest());
 SavedRequest savedRequest =
 WebUtils.getAndClearSavedRequest(request);
 // get external context in order to redirect
 ExternalContext externalContext =
 FacesContext.getCurrentInstance().getExternalContext();
 if (savedRequest != null) {
 logger.fine("Retrieved saved URL '" +
 savedRequest.getRequestUrl() + "', redirecting");
 externalContext.redirect(savedRequest.getRequestUrl());
 } else {
 logger.fine("No URL retrieved, redirecting to HOME_URL: "
 + HOME_URL);
 externalContext.redirect(HOME_URL);
 }
 } catch (AuthenticationException e) {
 logger.config("Failed login validation for user " +
 userName);
 FacesMessage msg =
 new FacesMessage(FacesMessage.SEVERITY_ERROR,
 "Invalid username/password combination", "");
 FacesContext.getCurrentInstance().addMessage(null, msg);
 } catch (Exception e) {
 logger.warning("Unexpected error during login", e);
 }
 return null;
 }

Securing an ADF Essentials Application

[222]

The imports should resolve automatically except for a few classes that
exist in more than one package. Import SecurityUtils from org.
apache.shiro, Subject from org.apache.shiro.subject, and
AuthenticationException from org.apache.shiro.authc.

This code uses Shiro functionality to create a new UsernamePasswordToken
object. If login fails, this raises an AuthenticationException object that will
show a FacesMessage.

If an exception is not raised, we retrieve the HttpRequest object and then get any
saved request using getAndClearSavedRequest(). If we get a SavedRequest
object, it means that the user ended up at this login page because they tried to access
a protected page. In this case, we want to return the user to the originally requested
page when login is successful. If we do not get a SavedRequest object, we send the
user to the application home page defined in HOME_URL.

The user filter
Because Shiro was born in the classic HTML and JSP world, it doesn't really
understand all the asynchronous JavaScript used in a modern JSF application. This
means that we cannot use a plain Shiro UserFilter filter to redirect to the login
page, but we instead need to build our own. Fortunately, JEE developer Bauke
Scholtz has already figured out how to built such a filter, and he has documented it
on his blog (http://balusc.blogspot.sg/2013/01/apache-shiro-is-it-ready-
for-java-ee-6.html). The following filter is verbatim the one he developed.

Create a Java class called FacesAjaxAwareUserFilter in a new view.filter Java
package under your application base package with content as follows:

Change the following package name to your own package name.
Remember which one you use—you'll refer to the fully qualified class
in your shiro.ini file.

package com.adfessentials.rental.view.filter;

import java.io.IOException;
import javax.servlet.ServletRequest;
import javax.servlet.ServletResponse;
import javax.servlet.http.HttpServletRequest;
import org.apache.shiro.web.filter.authc.UserFilter;

public class FacesAjaxAwareUserFilter extends UserFilter {
 private static final String FACES_REDIRECT_XML =

Chapter 7

[223]

 "<?xml version=\"1.0\" encoding=\"UTF-8\"?>" +
 "<partial-response><redirect " +
 "url=\"%s\"></redirect></partial-response>";

 @Override
 protected void redirectToLogin(ServletRequest req,
 ServletResponse res) throws IOException {
 HttpServletRequest request = (HttpServletRequest)req;
 if ("partial/ajax".
 equals(request.getHeader("Faces-Request"))) {
 res.setContentType("text/xml");
 res.setCharacterEncoding("UTF-8");
 res.getWriter().printf(FACES_REDIRECT_XML,
 request.getContextPath() + getLoginUrl());
 } else {
 super.redirectToLogin(req, res);
 }
 }
}

This class overrides the redirectToLogin() method that is called
whenever a user tries to access a protected resource without a valid
session (either because they have not logged in or because their session
has expired). Instead of just issuing a regular HTTP 302 redirect (that
won't work with JSF), this code issues a correct JSF partial-response.

The Shiro configuration
In the shiro.ini file, we need to set up the datasource object where our users,
roles, and permissions are stored, and tell Shiro which queries to use. Place the
following in your shiro.ini file:

[main]
user = com.vesterli.view.filter.FacesAjaxAwareUserFilter
shiro.loginUrl = /faces/login.jsf
user.loginUrl = /faces/login.jsf

DataSource config
ds = org.apache.shiro.jndi.JndiObjectFactory
ds.requiredType = javax.sql.DataSource
ds.resourceName = jdbc/SakilaDS

JDBC realm config
jdbcRealm = org.apache.shiro.realm.jdbc.JdbcRealm
jdbcRealm.permissionsLookupEnabled = true

Securing an ADF Essentials Application

[224]

Configure JDBC realm SQL queries.
jdbcRealm.authenticationQuery = SELECT password FROM sakila.users
WHERE user_name = ?
jdbcRealm.userRolesQuery = SELECT role FROM sakila.roles, sakila.user_
roles, sakila.users WHERE roles.id = user_roles.role_id and users.id =
user_roles.user_id and users.user_name = ?
jdbcRealm.permissionsQuery = SELECT permission FROM sakila.
permissions, sakila.role_permissions, sakila.roles WHERE permissions.
id = role_permissions.perm_id and roles.id = role_permissions.role_id
and roles.role = ?
jdbcRealm.dataSource = $ds

[urls]
/faces/** = user

Note the fully qualified name (including package) for your
FacesAjaxAwareUserFilter class.

You can recognize that the database is configured in the DataSource config section
and the SQL queries matching our data model are defined in another section. Refer
to the documentation and the two blogs listed at the beginning of this section for
more information.

Now, when you run any ADF page in your application, you will be prompted for a
username and password. If you provide a valid username and password, you will
be forwarded to the page you requested.

In a production application, you don't want to store cleartext passwords.
The blog by Bauke Scholtz referred to at the beginning of this section
also contains information about how to encrypt the password and
validate the password the user enters against this encrypted value.

Accessing the user
Once the user is authenticated, you can use the Expression Language expression
#{request.remoteUser} to get the username of the currently logged-in user.

Chapter 7

[225]

Implementing authorization
The preceding section shows you how to implement authentication—making
sure that users are prompted for username and password. But in many cases, you
want more than just knowing who your users are. This section describes how to
implement authorization to limit what various users can do with the application.

Can I see some ID, please?
The simplest type of authorization is to divide the application into a public part that
can be accessed by anyone and an authorized part that is only accessible to users
with a valid username and password.

To implement this, you simply configure the [urls] section of the shiro.ini file.
This section is evaluated in the order it is written, so you can place your publicly
accessible pages first and assign the security method anon to these. This method
means that everyone can access those URLs. Below your specifically public pages,
place a URL pattern that secures the rest of the application. This could look like this:

[urls]
/faces/welcome.jsf = anon
/faces//** = user

Only the welcome.jsf page is accessible to everyone; everything else under /faces
(that is, all your ADF pages) is covered by the user security defined previously in the
shiro.ini file.

Are you a member, Sir?
If this simple approach does not meet your business requirements, you can add
a role and permission-based authorization. Hard-coding role names into your
application is very inflexible and hard to maintain. Instead, you should think of
secured application functionality in terms of permissions and then assign these
permissions to roles.

Securing an ADF Essentials Application

[226]

In our rental application, there would be a permission to rent a DVD and a
permission to accept a return, and both of these would be assigned to the role of
store clerk. The various parts of the code can check for these permissions, but you
still have the flexibility to add a new role with only one of these permissions. For
the discussion in this chapter, consider the following permission data:

USERS
id username password

tiger
crownking

scott1
2

USERS_ROLES
role_iduser_id

1
2

2
1

CLERK
TRAINEE

roleid
1
2

ROLES

roleid
1
2
1

1
2
2

ROLE_PERMISSIONS

RENT_DVD
RETURN_DVD

permission
PERMISSIONS

id
1
2

User scott is a TRAINEE and therefore only has RETURN_DVD permission. User king
has role CLERK, which has both permissions RENT_DVD and RETURN_DVD.

Disabling elements
If we want to implement some authorization logic in our rental application, we can
for example disable the Register rental button if the current user does not have the
RENT_DVD permission.

To do this, we create the following method in our LoginBean:

 public boolean isRentDvdAllowed() {
 Subject currentUser = SecurityUtils.getSubject();
 return currentUser.isPermitted("RENT_DVD");
 }

Chapter 7

[227]

This code starts by getting the Shiro Subject, which contains all the security methods
we need for authorization. In this case, we return a Boolean indicating if the current
user has the RENT_DVD permission. Shiro automatically looks up the user, the user's
roles, and that role's permissions.

See the Shiro documentation for more methods on
Subject: http://shiro.apache.org/subject.html.

With this method programmed, we change the Disabled property on the Register
rental button to #{!backingBeanScope.LoginBean.rentDvdAllowed}. Note the
exclamation mark—the button is disabled if RENT_DVD is not allowed.

Removing elements
If you don't want to show the entire section for registering a rental, you can also find
the <af:region> tag in the page and set the Rendered property:

<af:region value="#{bindings.rentdvdflow1.regionModel}"
 id="r1"
 rendered="#{backingBeanScope.LoginBean.rentDvdAllowed}"/>

In this way, the entire task flow is only rendered on the Master page if the current
user has permission to rent DVDs.

Securing task flows
If you don't want to leave the security up to the user of the bounded task flow, but
would like to build the security directly into the task flow itself, you can start the
task flow with a method invocation and then use a Router component to stop the
task flow if the user does not have access. Your task flow should look like this:

Securing an ADF Essentials Application

[228]

In this case, the Default Activity is the isRentDvdAllowed method call activity. The
Method property is set to #{backingBeanScope.LoginBean.isRentDvdAllowed}
and the toString() property is set to true. This means that a toString() operation
is applied on the result of the method call (which returns a Boolean). The Return
Value property is set to #{pageFlowScope.accessAllowed}, which means that the
result (converted to a String) is stored in the accessAllowed variable in the page
flow scope.

In the securityCheck Router component, the default outcome is set to securityFail,
which causes an immediate return from the task flow. Additionally, one case is
defined with the expression #{pageFlowScope.accessAllowed} (the variable where
we placed the result String from the method call) and outcome securityOK. Your
properties dialog should look like this:

This means that only if accessAllowed is true does the flow proceed to the
rentDvd view.

Router cases must evaluate to true or false. If you want to make a
decision based on a String that is not simply true or false, you have
to use Expression Language operators to perform a comparison—for
example, #{pageFlowScope.operation eq 'Rental'}.

Summary
You have now seen how to secure your ADF Essentials application with Apache
Shiro so that only properly authenticated users can use your application. You have
also seen several ways of using Shiro methods in beans to control access to various
parts of the application.

In the last chapter, you will see how you can set up procedures to build and deploy
your ADF Essentials application to test and production environments.

Build and Deploy
Your application is done with functionalities and the necessary security features
have been applied. As you have seen many times through out the book, you can
deploy your application from JDeveloper directly to the GlassFish server.

However, in a professional software development setting, you will typically want
this process to be automated and not dependent on a developer having to perform
a manual procedure in the development environment.

After each cycle of test and rework, you need to create a new deliverable package
until it passes all tests. Then, the same package goes to the operations staff to install
in the pre-production or production environment. In case your package does not
install cleanly on this environment, you go back to the drawing board, fix the code
or the documentation, and create a new package.

One tool for build automation is Apache Ant (http://ant.apache.org). This open
source tool is included with JDeveloper (in the jdeveloper\ant subdirectory).

Creating a build script
When working with Ant, you create a buildfile (traditionally called build.xml) to
specify how to build a project. This XML file consists of a number of targets that
define the different goals you might want your build process to achieve, for example
clean, init, compile, test, or deploy. Within each target are a number of steps
called tasks. Ant comes with a large number of pre-built tasks, and many tools that
integrate with Ant supply their own tasks. If you are not already familiar with Ant,
there are several books and many online resources available—for example, the online
manual at http://ant.apache.org/manual/index.html.

Build and Deploy

[230]

The version that is online at this URL applies to the latest version of
Apache Ant—if you run the version included with JDeveloper, you
are likely to be running a slightly older version.

You can run your Ant scripts from within JDeveloper by right-clicking on them and
choosing either Run Ant Target or Debug Ant Target, like this:

You can also run them directly from the command line. By default, the JDeveloper
subdirectory that contains Ant is not on your system path. To make it easier to use Ant,
it is a good idea to add the jdeveloper\ant\bin directory to your PATH. Alternatively,
you have to provide the whole path to the Ant executable (C:\adfessentials\
middleware111240\jdeveloper\ant\bin\ant if you have installed in the
recommended directories on Windows).

Simply change to the directory where your buildfile (build.xml) is placed and
execute the command as follows:

ant <target>

For example:

ant deploy

Chapter 8

[231]

Creating the script
JDeveloper can automatically generate an Ant build script for a project. To do this,
simply select the project and choose File | New. In the New Gallery dialog box,
change to the All Features tab at the top and then choose Ant (under General) and
then Buildfile from Project, as shown in the following screenshot:

In subsystem workspaces that contain both a Model and a View project, you must
create the build.xml file in the View project. Because of the dependency between the
View and the Model projects (created by JDeveloper when you select Fusion Web
Application), building the View project automatically builds the Model project).

Build and Deploy

[232]

In the following dialog box, you can leave the default filename of build.xml, but
make sure that you check the checkbox Include Packaging Tasks (uses ojdeploy) as
shown in the following screenshot:

After you click on OK, you will see that JDeveloper has added a build.xml file and
a build.properties file to your project (in the Application Navigator, they appear
under Resources). You can open them to get a feel for the information they contain.

JDeveloper deployment without the user interface
The ojdeploy referred to by the dialog box is a command-line
Java program that can do anything JDeveloper can do with regards
to deployment. This program is included with JDeveloper so that
you can automate your build process as described in this section. It
uses some JDeveloper libraries, so it is easiest to install JDeveloper
on the machine where you run it. Refer to the documentation for a
thorough explanation of the many options with ojdeploy.

Deploying a single application
To deploy your application, you can simply right-click on the build.xml file.
JDeveloper recognizes that the file is an Ant build file and offers special Ant menu
items. Choose Run Ant Target and then deploy.

You will see a new Apache Ant subtab appearing in the log window showing the
output of the Ant build process. It should end with the following line:

BUILD SUCCESSFUL

Chapter 8

[233]

The default build.xml file that JDeveloper builds for you will deploy all the
deployment profiles defined for the project. So, if you have a deployment profile for
creating an ADF Library defined in your project, your ADF library gets built. Unless
you have deleted the default deployment profile, you will see that other files (JAR
or WAR) might get built as well. To avoid this, remove any superfluous deployment
profiles from the project properties.

You will find the finished ADF library in the position indicated by the deployment
profile—typically a deploy subdirectory under the project.

Building the master application
The build files in the various subsystems in your application each build only one
ADF Library. However, the master application must be an EAR file containing all the
ADF libraries plus the master application itself. The tasks involved include:

1.	 Calling all the common and subsystem workspaces in the right order to build
all the ADF libraries.

2.	 Copying the newly built ADF libraries to a common directory (for example,
in the master application).

3.	 Building the master application.

Starting point
Before you generate the build.xml file for the master application, you need to make
sure that:

•	 Your master application project has a deployment profile that deploys the
project as a WAR file

•	 Your master application itself has a deployment profile that deploys the
application as an EAR file

When you have this, you create a build.xml file for the master application like you
do for the subsystems. By default, this one has a deploy target that builds the project.

Build and Deploy

[234]

Building the application EAR file
In order to create the complete application (the EAR file), you can open the build.
xml file and copy the entire deploy task (the tag starting <target name="deploy"
… until the </target> tag). The original deploy task builds the project—in order to
make the copy build the application instead, you need to:

•	 Change the target name
•	 Add a dependency on the original deploy task
•	 Remove the project parameter
•	 Change the outputfile parameter

Your new task might look like this in the build.xml file:

<target name="buildear"
 description="Deploy JDeveloper profiles" depends="deploy">
 <taskdef name="ojdeploy"
 classname="oracle.jdeveloper.deploy.ant.OJDeployAntTask"
 uri="oraclelib:OJDeployAntTask"
 classpath="${oracle.jdeveloper.ant.library}"/>
 <ora:ojdeploy xmlns:ora="oraclelib:OJDeployAntTask"
 executable="${oracle.jdeveloper.ojdeploy.path}"
 ora:buildscript=
 "${oracle.jdeveloper.deploy.dir}/ojdeploy-build.xml"
 ora:statuslog=
 "${oracle.jdeveloper.deploy.dir}/ojdeploy-statuslog.xml">
 <ora:deploy>
 <ora:parameter name="workspace"
 value="${oracle.jdeveloper.workspace.path}"/>
 <ora:parameter name="profile"
 value="${oracle.jdeveloper.deploy.profile.name}"/>
 <ora:parameter name="nocompile" value="false"/>
 <ora:parameter name="outputfile" value=
 "oracle.jdeveloper.deploy.outputfile=
C\:\\JDeveloper\\mywork\\DraMaster\\deploy\\DraMaster.ear"/>
 </ora:deploy>
 </ora:ojdeploy>
</target>

When you run this task, you will find that the EAR file is built with the filename
and directory indicated in the outputfile parameter (C:\JDeveloper\mywork\
DraMaster\deploy\DraMaster.ear).

Chapter 8

[235]

Note that the ojdeploy task, despite the name, does not actually
deploy the application to any application server—it merely builds all
the deployment profiles.

Building all the subsystems
If you have created build.xml files in all your subsystems, it is easy to just call these
buildfiles from your master application buildfile using an <ant> task.

Remember that we have three common workspaces (CommonCode, CommonModel,
and CommonUI), a number of subsystems, and one master application. For the DVD
Rental Application with the abbreviation Dra, the dependencies look like this:

DraMaster

DraRentDvd

DraCommonModel DraCommonUI

DraReturnDvd

DraCommonCode

In your master buildfile, you can create a new target to build all the subsystems
like this:

<target name="buildsub"
 description="Build common and subsystems" depends="init">
 <ant dir="${basedir}/../../DraCommonCode/CommonCode"
 inheritall="false"/>
 <ant dir="${basedir}/../../DraCommonModel/CommonModel"
 inheritall="false"/>
 <ant dir="${basedir}/../../DraCommonUI/CommonUI"
 inheritall="false"/>
 <ant dir="${basedir}/../../DraRentDvd/RentDvdView"
 inheritall="false"/>
 <ant dir="${basedir}/../../DraReturnDvd/ReturnDvdView"
 inheritall="false"/>
</target>

Build and Deploy

[236]

Notice that we start from the ${basedir} location, which is where our master
buildfile runs. From there, we go up two levels and then down into the individual
subsystems and down into the relevant project in each subsystem to find the local
build.xml file. You need the inheritall=false parameter to prevent the variable
values from the master buildfile from being inherited by the subsystem build files.

When you run this task, the ADF libraries in all subsystems are built. This means
that a new ADF Library is built in the deploy subdirectory of every project.

Copying all ADF libraries
Your build/deployment manager will normally ensure that some kind of quality
assurance is performed on the ADF libraries from the subsystems before they are
released to everyone else. However, if you just want to copy the libraries from each
subsystem to the adfjars directory in your master application, you can use the Ant
<copy> task for this.

In your master buildfile, you can create a new target to copy all ADF libraries to
the master application like this:

<target name="copysub"
 description="Copy command and subsystem ADF Libraries"
 depends="init">
 <copy
 file="${basedir}/../../DraCommonCode/CommonCode/
 deploy/adflibDraCommonCode.jar"
 todir="${basedir}/../adfjars"/>
 <copy
 file="${basedir}/../../DraCommonModel/CommonModel/
 deploy/adflibDraCommonModel.jar"
 todir="${basedir}/../adfjars"/>
 <copy
 file="${basedir}/../../DraCommonUI/CommonUI/
 deploy/adflibDraCommonUI.jar"
 todir="${basedir}/../adfjars"/>
 <copy file="${basedir}/../../DraRentDvd/RentDvdView/
 deploy/adflibDraRentDvd.jar"
 todir="${basedir}/../adfjars"/>
 <copy file="${basedir}/../../DraReturnDvd/ReturnDvdView/
 deploy/adflibDraReturnDvd.jar"
 todir="${basedir}/../adfjars"/>
</target>

Chapter 8

[237]

Again, we start from the ${basedir} location and go up two levels. We then go
down into the individual subsystems, and down into the relevant project in the
subsystem, then going down into the deploy directory where the ADF Library
resides. Because the line length in this book is limited, the file parameter is
wrapped on two lines—this should be one line in your build.xml file.

When you run this task, all the ADF libraries from the subsystems (that were built by
the buildsub task) are copied to the master application.

Putting it all together
Now you have all the tasks necessary to build the entire application. To make
everything happen in the right order, you can change the dependencies so that
buildear depends on copysub and deploy, and copysub depends on buildsup,
like this:

<target name="buildear" … depends="copysub,deploy">
…

<target name="copysub" … depends="buildsub">
…

<target name="buildsub" … >

When you ask Ant to run the buildear task, it will first try to run copysub.
However, because copysub depends on buildsub, the buildsub tasks runs first.
Then comes copysub, and finally deploy (which builds the master project). Then, the
content of the buildear task is run, building the actual EAR file.

Automated deployment to GlassFish
The Ant scripts described in the previous section create a Java Enterprise Archive
(EAR) file, which is a complete application. The next step is to deploy it to the
GlassFish server in order to be able to run it from a browser.

You have seen earlier how to create a GlassFish connection from JDeveloper and use
this connection to deploy your application directly from JDeveloper to GlassFish. You
can also use the GlassFish administration console at http://<server>:<admin_port>
(for example, http://localhost:4848) to upload and deploy the EAR file. However,
for an automated process, you need a scriptable (command-line) tool that can perform
this deployment. For GlassFish, the tool that comes with the server is asadmin.

You can find this tool in your GlassFish installation in the bin
directory (if you have used the recommended directories in this
book, in C:\adfessentials\glassfish3\glassfish\bin).

Build and Deploy

[238]

Deploying from the command line
To deploy an EAR file from the command line, simply change to the directory where
your EAR file is placed and execute the following command:

asadmin deploy <earfile>

For the DVD Rental app, the instruction would be as follows:

asadmin deploy DraMaster.ear

To undeploy, the command is as follows:

asadmin undeploy <application name>

For example:

asadmin undeploy DraMaster

Note that the deploy command takes a file name as a parameter
and the undeploy command takes an application name. You set
the application name under the application properties in JDeveloper.

If you are running an automated build tool like Hudson/Jenkins, you can integrate
this command directly into your build tool.

Deploying from Ant
You can also run these commands from Ant with <exec> tasks. An example of an
Ant target for undeploying is as follows:

<target name="undeployapp">
 <exec dir="c:\glassfish3\glassfish\bin" executable="cmd">
 <arg value="/c"/>
 <arg value="asadmin.bat"/>
 <arg value="undeploy"/>
 <arg value="DraMaster"/>
 </exec>
</target>

Because the asadmin command is a .bat file under Windows, you have to run
the cmd executable with the /c parameter followed by the actual .bat filename
and the parameters.

Chapter 8

[239]

Your deploy target would therefore look like this:

<target name="deployapp">
 <exec dir="${basedir}/../deploy" executable="cmd">
 <arg value="/c"/>
 <arg value="c:\glassfish3\glassfish\bin\asadmin.bat"/>
 <arg value="deploy"/>
 <arg value="DraMaster.ear"/>
 </exec>
</target>

Integrating other functionality in your
build
If you want your build and deployment procedure to run automatically, you will
typically use a continuous integration tool like Hudson (http://www.hudson-ci.org).
This tool can run standalone, but you can also install it into your GlassFish server.

These tools support automatically checking out the latest version of your code from
source control and running tasks (like the Ant scripts in this chapter). You can define
triggers (for example, build automatically after every commit to Subversion) and add
additional functionality like automatic unit tests.

Preparing to go live
You can use this build procedure both during development and when you prepare to
release your application. However, before you go live, you should clean up the code
and set the application parameters for production use.

Cleaning up your code
Some things that you should check for in your code are:

•	 Database connections
•	 Deployment platforms
•	 Print statements

Additionally, JDeveloper contains a code audit tool. To see what JDeveloper thinks
about your code, select a project and choose Build | Audit. In the Audit dialog box,
you can click on Edit to select which rules you want to check in your project.

Build and Deploy

[240]

Database connections
In each subsystem where you create Business Components, you define a database
connection. Hopefully, you have remembered to deploy Connection Name Only in
all your subsystem deployment profiles as shown in the following screenshot:

It's a good idea to check all of these before you release your application to
pre-production or production environments.

Also, make sure that your installation instructions contain the name of the database
connection that must exist on the server.

Chapter 8

[241]

Deployment platforms
In the WAR deployment profile in your master application project and in the
application deployment profile, remember to set Default Platform to Glassfish
3.1 as shown in the following screenshot:

If you forget this, you might get hard-to-interpret error messages
during deployment.

Build and Deploy

[242]

Print statements
Of course, you have used the logging method you all agreed on in the project
team and did not write any simple System.out.println() statements in your
code. However, somebody else might have done so. To check for these kind of
impurities in your project code, you can use JDeveloper's global file search
capability. Choose Search | Find in Files to search through your active project
or application (or any user-defined path in the filesystem).

Tuning your ADF application
There are a lot of tuning parameters to tweak to make your ADF application run
as fast as possible using as few resources as possible. The defaults are generally
OK, but if you want to know what your options are, refer to the chapter on Oracle
Application Development Framework Performance Tuning in Oracle Fusion
Middleware Performance and Tuning Guide. Additionally, a lot of material on ADF
tuning is available on the Oracle Technology Network and elsewhere on the
Internet—Google oracle adf tuning for more.

Summary
Well, that's all there is to it! If you have followed the exercises in this book, you are
ready to build real-world ADF Essentials applications and can consider yourself an
ADF Essentials journeyman.

A journeyman is someone who has completed an apprenticeship
and is fully educated in a trade or craft, but not yet a master.
Wikipedia, https://en.wikipedia.org/wiki/Journeyman,
June 2013.

To continue your journey towards becoming an ADF Master, many resources are
available—see the book website at http://adfessentials.com for some pointers as
to where you could go next.

Have fun!

Index
Symbols
<listener> element 215

A
accessors

overriding 122-124, 131, 132
ADF application

layers 49
tuning 242

ADF Business Components (ADF BC)
about 49, 50
application modules 52
associations 52
entity objects 51
view links 52
view objects 52
working 53, 55

ADF domain 62
ADF Essentials

about 30, 31
ADF Share libraries, installing in

GlassFish 28
downloading 27, 28
GlassFish JVM parameters, setting 29, 30
installing 27

ADF Essentials application
application module configuration 44
building 36
Business Service layer 36
business services, building 38-40
Controller layer 36, 42
creating 36, 37
Database layer 36
deploying 43

deployment profile properties 44
Model layer 36, 41
MySQL Sakila demo database 38
platform, changing 44
running 45-48
securing 213
View layer 36, 42, 43

ADF libraries
breakpoint, placing 208, 209
creating 162, 163
debugging into 206
releasing 163
source directory, creating 206
source, including in master application 208
source JAR file, creating 207
using 164
working with 162

ADF library, Common Code Workspace
creating 171
releasing 172

ADF library, CommonModel workspace
adding 176, 178

ADF library, CommonUI workspace
adding 174, 175
creating 175
releasing 176

ADF library folder, master application
workspace

creating 168, 169
ADF library, RentDvd subsystem

workspace
adding 178

ADF library, ReturnDvd subsystem
workspace

adding 183
ADF lifecycle 203

[244]

ADFLogger 191
ADFLogger.createADFLogger() method 192
ADF logging

about 191
business logging 194
JDeveloper shortcuts 194-196
logger, creating 192
logs, reading 197, 198
log statements, adding 192, 193

ADF Naming and Project Layout
Guidelines

URL 53
ADF Share libraries

installing, in GlassFish 28
ADF source code

debugging into 210
Advanced Shiro

about 217, 218
form-based authentication 219
user, accessing 224
user database 218, 219

Apache Ant
URL 229

application
deploying 232, 233
preparing, for release 239-242
Shiro security, using 214, 215

application module 52, 79-81
application module, RentDvd subsystem

workspace
creating 180, 181

application module, ReturnDvd subsystem
workspace

creating 185, 186
application modules, logic 134
asadmin 237
associations

about 52
cleaning up 66

attribute values
working with 138, 139

authentication
about 213
elements, disabling 226, 227
elements, removing 227
task flows, securing 227, 228

authorization
about 213
implementing 225, 226

autogenerated values 63
automated deployment, Glassfish

about 237
deploying, from Ant 238
EAR file, deploying from command line

238

B
bean

adding, to task flow 136
creating 142, 143, 148
UI components, accessing from 137

bean method
adding, to button 135, 136

binding layer
accessing 138

binding layer, accessing
attribute values 138, 139
operations 139
whole data sets 140

binding, RentDvd subsystem workspace
adding 181, 182

bindings
establishing 144, 145

bind variable 73
bounded task flow 86
build script

creating 229-232
business components

logic, adding to 121
testing 82, 83

Business Components from Tables wizard
running 61

business logging 194
business logic, RentDvd subsystem work-

space
adding 182

business service layer
about 49
possibilities 49

button
bean method, adding to 135, 136

[245]

C
client interface 121
code

structuring 157
code template feature 194
command line

EAR file, deploying from 238
CommonCode Workspace

about 159, 169
ADF library, creating 171
ADF library, releasing 172
adding, to source control 170
creating 169
framework extension classes, re-creating

169
JDeveloper preferences, verifying 170

CommonModel workspace
about 159, 176
adding, to source control 177
ADF library, adding 176
ADF library, creating 177
creating 176
entity objects, creating 176, 177

CommonUI workspace
about 159, 172
adding, to source control 175
ADF library, adding 174, 175
ADF library, creating 175
creating 172
releasing 176
task flow template, creating 172, 174

conditional formatting 152
Controller layer 85
Customer Search Page Fragment, ReturnD-

vd subsystem workspace
creating 187

customer view object
building 72-75

Customer view object, ReturnDvd subsys-
tem workspace

creating 183

D
database triggers

working with 124, 125

data bindings
customer, displaying on page 113-116
customer rentals, displaying on page 116,

117-119
navigation, adding 120
using 113

Data Manipulation Language (DML) 125
DataSource

adding, in GlassFish 25, 26
data types

cleaning up 64, 65
data validation

about 127
declarative validation 127, 128
Groovy scripts 130
method validation 130
regular expression validation 129

declarative validation 127, 128
default activity 91
deploy command 238
doDML() method

about 123, 125
overriding 125, 126

domain logging
controlling 200

domains
about 62
ADF domain 62
Enum domain 63
Mediumint domain 63
Set domain 63
Text domain 63
Year domain 63

DVD rental application
rental, registering 142
return, registering 147

E
EAR file

building, for application 234
deploying, from command line 238

elements, task flow
router 98
task flow call 98
task flow return 98

[246]

enterprise applications
building 157

entity objects
about 51
building, for example application 59-61
invalid references, removing from 70

entity objects, CommonModel workspace
creating 176, 177

entity objects, logic
about 122
accessors, overriding 122-124
database triggers 124, 125
doDML() method, overriding 125, 126

Enum domain 63
example application

associations, cleaning up 66
autogenerated values 63
data types, cleaning up 64, 65
DVD rental application 141
entity objects, building for 59-61
labels, setting 63
starting 53

example application, pages
ADF query panel 109
customer search page,

building 106-108
master page, building 110, 111
page, running 112
Rent DVD page, building 109
Return DVD page, building 109

example application, task flow
Rent DVD task flow, building 89-91
Return DVD task flow, building 92-96

F
fields

mapping 143
form-based authentication

about 217, 219
login bean 220
login method 221, 222
login page 220
user filter 222, 223

framework extension classes
about 56
creating 57, 58

using 58, 59
framework extension classes, Common

Code Workspace
re-creating 169

Full ADF
about 30
ADF Desktop Integration 31
ADF Mobile 31
ADF remote taskflows 31
ADF Security 31
MetaData Services 31

functionalities, Shiro 213

G
getSelectedRowKeys() method 152
GIT 160
GlassFish

about 21
automated deployment 237
DataSource, adding 25, 26
domain, setting up 23, 24
downloading 21
installing 21, 22
MySQL connector, installing 25

GlassFish JVM parameters
setting 29, 30

GlassFish logging
about 199
domain logging, controlling 200
individual loggers, controlling 200

GlassFish Server Extension
installing, in JDeveloper 33, 34

Groovy 130
Groovy scripts 130

H
Hudson

URL 239

I
individual loggers

controlling 200
installation

ADF Essentials 27
JDeveloper 30

[247]

JDK 7 19
MySQL 10

invalid references
removing, from entity objects 70

items, returning
attribute return value, coding 153
attribute value, using 154
new attribute, binding 153
transient attribute, creating 152

iterator 140

J
Java Authentication and Authorization

Service (JAAS) 213
JavaServer Faces (JSF) 203
JDeveloper

11g Release 1 branch 31
11g Release 2 branch 31
about 158
code, debugging 201-203
debugging concepts 201
debugging, into ADF libraries 206
debugging, into ADF source code 210
downloading 32
GlassFish Server, connecting to 35
GlassFish Server Extension,

installing 33, 34
installing 30, 32
MySQL Connector, installing 32, 33
task flows, debugging 204, 205

JDeveloper deployment
without user interface 232

JDeveloper preferences, Common Code
Workspace

verifying 170
JDeveloper shortcuts 194-196
JDK 7

downloading 19
installing 19-21

L
labels

setting, for example application 63

log4j 191
Logback 191
logger

creating 192
logging

persistent loggers 198
transient loggers 198

logging guidelines
example 193

logging.xml file 198
logic

adding, to business components 121
adding, to user interface 135
in application modules 134
in entity objects 122
in view objects 130

logic, in business components
about 121
application modules 134
data validation 127
entity objects 122
view objects 130

logic, user interface
about 135
bean, adding to task flow 136
bean method, adding to bean 135, 136
binding layer, accessing 138
messages, displaying 140, 141
UI components, accessing from beans 137

login bean, form-based authentication 220
login method, form-based authentication

221, 222
login page, form-based authentication 220
log level

CONFIG 193
FINE 193
FINER 193
FINEST 193
INFO 193
SEVERE 193
WARNING 193

logs
reading 197, 198

log statements
adding 192, 193

[248]

M
master application

ADF libraries, copying 236, 237
building 233
EAR file, building 234
subsystems, building 235, 236

master application workspace
about 165
adding, to source control 166-168
ADF libraries, adding 189
ADF library folder, creating 168, 169
creating 165, 166
finishing 189
master page, creating 189, 190

Master Workspace 159
Mediumint domain 63
memory scopes, task flow

about 97
BackingBean scope 97
PageFlow scope 97
Session scope 97

message tokens 128
method validation 130
Model layer 85
Model project 158
Model-view-controller (MVC) pattern 138
MySQL

download link 10
MySQL connector

installing, in GlassFish 25
installing, in JDeveloper 32

MySQL installation
data, modifying 18
MySQL options, changing 16
MySQL Workbench, starting 16-18
performing 10-12
server configuration 14, 15

O
operations

working with 139
Oracle Application Development Frame-

work (Oracle ADF) 9
Oracle Diagnostics Logging (ODL) 191
Oracle Platform Security Services

(OPSS) 216

P
packages

installing, in application 214, 215
page, bounded task flow 87
page fragment, bounded task flow 87
page fragment, RentDvd subsystem

workspace
creating 181

pages
building 99
building, templates used 99

pages, building
example application 106
facet, defining 100
page fragment template 100-102
page template 102-104

partial page rendering 88
persistent loggers 198
Plain Old Java Objects (POJOs) 50
prepareSession() method 134
projects 158

R
realms 218
redirectToLogin() method 223
registerReturn() method 151
regular expression validation 129
rental, DVD rental application

registering 142
rental registration, DVD rental application

bean, creating 142, 143
bindings, establishing 144, 145
code, writing 146, 147
fields, mapping 143

Rentals Page Fragment, ReturnDvd subsys-
tem workspace

creating 188
rental view object

building 75-77
Rental view object, ReturnDvd subsystem

workspace
creating 184, 185

RentDvd subsystem workspace
about 178
ADF library, adding 178
application module, creating 180, 181

[249]

binding, creating 181, 182
business logic, adding 182
creating 178
page fragment, creating 181
task flow, creating 181
view object, creating 179, 180

Rent DVD task flow
building 89-91

return, DVD rental application
registering 147

ReturnDvd subsystem workspace
about 182
ADF libraries, adding 183
application module, creating 185, 186
creating 183
Customer Search Page Fragment, creating

187
Customer view object, creating 183
Rentals Page Fragment, creating 188
rental view object, creating 184, 185
return, registering 188
task flow, creating 187
View Link, creating 185

Return DVD task flow
building 92-96

return registration, DVD rental application
bean code, writing 151
bean, creating 148
bindings, establishing 151
button, adding 147
column, adding 147
method, publishing 150
table, mapping 148
view object method, creating 149

return, ReturnDvd subsystem workspace
registering 188

S
Set domain 63
setLastName() method 124
setOverdueDayLimit() method 133
Shiro

about 213
application 216, 217
functionalities 213
packages, installing in application 214, 215

URL, for downloading 214
Shiro configuration 223, 224
Shiro INI configuration file 216
shiro.ini file 223
Shiro security

using, in application 214, 215
Simple Logging Façade for Java (SLF4J)

about 214
URL 214

source control
adding, to Common Code Workspace 170
adding, to CommonModel workspace 178
adding, to CommonUI workspace 175
adding, to master application workspace

166-168
SQL injection 74
SQL statements

logging 199
storyboard 71, 72
Subsystem Workspaces 159
superfluous associations

deleting 67, 68

T
table

mapping 148
task flow, RentDvd subsystem workspace

creating 181
task flow, ReturnDvd subsystem workspace

creating 187
task flows

bean, adding to 136
bounded task flow 86
building 86
debugging 204, 205
elements 98
example application 89
memory scopes 97
page fragment 87
pages 87
securing 227, 228
task flow templates 88, 89
unbounded task flow 86

task flow template, CommonUI workspace
creating 173, 174

task flow templates

[250]

about 88
building 88, 89

Text domain 63
transient attribute 152
transient loggers 198

U
UI components

accessing, from beans 137
unbounded task flow 86
undeploy command 238
user, Advanced Shiro

accessing 224
user database, Advanced Shiro 218, 219
user filter, form-based authentication 222,

223

V
version control

outside JDeveloper 162
using 160, 161

view criteria
about 52
modifying 132, 133

view criterion 183
View layer 85
view link

creating 78, 79
View Link, ReturnDvd subsystem work-

space
creating 185

View Links 52
view object method

creating 149

view object, RentDvd subsystem workspace
creating 179, 180

view objects
about 52
building 71
customer view object, building 72-75
rental view object, building 75-77
storyboard 71, 72
view link, creating 78, 79

view objects, logic
about 130
accessors, overriding 131, 132
view criteria, modifying 132, 133

View project 158

W
WebLogic

DataSource, adding to 47, 48
setting up, for MySQL 47

whole data sets
working with 140

workspace 158
workspace hierarchy 158, 159
wrong associations

fixing 68, 69

Thank you for buying
Developing Web Applications with Oracle

ADF Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to books
published on enterprise software – software created by major vendors, including (but not limited
to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer information
relevant to a range of users of this software, including administrators, developers, architects, and
end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Oracle ADF Enterprise Application
Development—Made Simple
ISBN: 978-1-84968-188-9 Paperback: 396 pages

Successfully plan, develop, test, and deploy enerprise
applications with Oracle ADF

1.	 Best practices for real-life enterprise
application development

2.	 Proven project methodology to ensure
success with your ADF project from an
Oracle ACE Director

3.	 Understand the effort involved in building
an ADF application from scratch, or converting
an existing application

Oracle ADF Real World
Developer's Guide
ISBN: 978-1-84968-482-8 Paperback: 590 pages

Mastering essential tips and tricks for building next
gernation enterprise application with Oracle ADF

1.	 Full of illustrations, diagrams, and tips
with clear step-by-step instructions and
real-time examples

2.	 Get to know the visual and declarative
programming model offered by ADF.

3.	 In depth coverage of ADF business c
omponents and ADF binding layer

4.	 Teaches you the ADF best practices and
fine-tuning tips

Please check www.PacktPub.com for information on our titles

Oracle ADF 11gR2 Development
Beginner's Guide
ISBN: 978-1-84968-900-7 Paperback: 330 pages

Experience the easiest way to learn, understand, and
implement rich Internet application using Oracle
ADF 11gR2

1.	 Implement a web-based application using
the powerful ADF development framework
from Oracle

2.	 Experience the fun of building a simple web
application with practical examples and step-
by-step instructions

3.	 Understand the power of Oracle ADF
11gR2 and develop any complex application
with confidence

Oracle WebCenter 11g PS3
Administration Cookbook
ISBN: 978-1-84968-228-2 Paperback: 348 pages

A J2EE developer's guide to using Oracle
JDeveloper's integrated database features to build
data-driven applications

1.	 The only book and eBook in the market that
focuses on administration tasks using the new
features of WebCenter 11g PS3

2.	 Understand the use of Wiki and Discussion
services to build collaborative portals

3.	 Full of illustrations, diagrams, and tips
with clear step-by-step instructions and
real-world examples

4.	 Learn how to build rich enterprise 2.0 portals
with WebCenter 11g

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgement
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: My First ADF Essentials Application
	Getting ready
	Installing MySQL
	MySQL installation
	Configuring
	Changing MySQL options
	Does it work?
	Modifying some data

	Installing Java Development Kit and GlassFish
	Installing JDK 7
	Installing GlassFish
	GlassFish installation
	Setting up the domain
	Does it work?
	Installing the MySQL connector in GlassFish
	Adding a DataSource to GlassFish

	Installing ADF Essentials
	Getting ADF Essentials
	Installing the ADF Share libraries in GlassFish
	Setting the GlassFish JVM parameters
	Does it work?

	Installing JDeveloper
	JDeveloper or Eclipse?
	Which JDeveloper?
	JDeveloper installation
	Installing the MySQL Connector in JDeveloper
	Installing the GlassFish Server Extension
	Connecting to the GlassFish server

	Building a simple ADF Essentials application
	Creating the application
	Database
	Business service
	Model layer
	Controller layer
	View layer
	Getting ready to deploy
	DataSource
	Application module configuration
	Change platform

	Running your first ADF Essentials application

	Can it run faster?
	Setting up WebLogic for MySQL
	Adding a DataSource to WebLogic
	Running your first ADF Essentials application again

	Summary

	Chapter 2: Creating Business Services
	Business service possibilities
	ADF Business Components
	Starting the example application
	How ADF business components work
	Building your own foundation
	Building framework extension classes
	Using framework extension classes

	Building entity objects for the example application
	Preparing to build
	Running the wizard
	Examining the result
	Setting the labels
	Autogenerated values
	Cleaning up the data types
	Cleaning up the associations
	Deleting superfluous associations
	Fixing wrong associations
	Removing invalid references from entity objects

	Building view objects
	The storyboard
	Building the customer view object
	Building the rental view object
	Creating a view link

	Application module
	Testing business components
	Summary

	Chapter 3: Creating Task Flows
and Pages
	Building task flows
	Bounded and unbounded task flows
	Pages and fragments
	Task flow templates
	Example application
	Building the Rent DVD task flow
	Building the Return DVD task flow

	Memory scopes
	Other elements of task flows

	Building pages
	Using templates
	Facet definitions
	Page fragment template
	Page template

	Example application
	Building the customer search page
	Building the Return DVD page
	An alternative – ADF query panel
	Building the Rent DVD page
	Building a master page
	Running the page

	Using data bindings
	Showing a customer on a page
	Showing customer rentals on a page
	Adding navigation

	Summary

	Chapter 4: Adding Business Logic
	Adding logic to business components
	Logic in entity objects
	Overriding accessors
	Working with database triggers
	Overriding doDML()

	Data validation
	Declarative validation
	Regular expression validation
	Groovy scripts
	Method validation

	Logic in view objects
	Overriding accessors
	Change view criteria

	Logic in application modules

	Adding logic to the user interface
	Adding a bean method to a button
	Adding a bean to a task flow
	Accessing UI components from beans
	Accessing the binding layer
	Working with attribute values
	Working with operations
	Working with whole datasets

	Showing messages

	Example application
	Registering a rental
	Creating a bean
	Mapping the fields
	Establishing bindings
	Writing the code

	Registering a return
	Adding a column and a button
	Creating a bean
	Mapping the table
	Creating a view object method
	Publishing your method
	Establishing bindings
	Writing the bean code

	Marking items returned today
	Creating a transient attribute
	Binding the new attribute
	Coding the attribute return value
	Using the attribute value
	Other ideas

	Summary

	Chapter 5: Building Enterprise Applications
	Structuring your code
	Workspaces and projects
	The workspace hierarchy
	The directory structure

	Using version control
	Working with ADF libraries
	Creating ADF libraries
	Releasing ADF libraries
	Using ADF libraries

	Example application
	Creating the Master Application Workspace
	Creating the workspace
	Adding to source control
	Creating the ADF library folder

	Creating the CommonCode workspace
	Creating the workspace
	Recreating the framework extension classes
	Check your JDeveloper preferences
	Adding to source control
	Creating the ADF library
	Releasing the ADF library

	Creating the CommonUI workspace
	Creating the workspace
	Creating the templates
	Adding an ADF library
	Adding to source control
	Creating and releasing the ADF library

	Creating the CommonModel workspace
	Creating the workspace
	Adding an ADF library
	Creating the entity objects
	Adding to source control and creating the ADF library

	Creating the RentDvd subsystem workspace
	Creating the workspace
	Adding ADF libraries
	Creating the view object
	Creating the application module
	Creating the task flow and page fragment
	Adding a binding
	Adding the business logic
	Remaining work

	Creating the ReturnDvd subsystem workspace
	Creating the workspace
	Adding ADF libraries
	Creating the Customer view object
	Creating the Rental view object
	Creating a View Link
	Creating an application module
	Creating the task flow
	Creating the Customer Search Page Fragment
	Creating the Rentals Page Fragment
	Registering a return
	Remaining work

	Finishing the Master Application Workspace
	Adding the ADF libraries
	Create the master page

	Summary

	Chapter 6: Debugging ADF Applications
	ADF logging
	Creating a logger
	Adding log statements
	Business logging
	JDeveloper shortcuts
	Reading the logs

	Logging in GlassFish
	Controlling domain logging
	Controlling individual loggers

	Debugging in JDeveloper
	Debugging code
	Understanding the ADF lifecycle
	Debugging task flows
	Debugging into ADF libraries
	Creating a source directory
	Creating a source JAR file
	Including the source in the master application
	Placing a breakpoint in an ADF library

	Debugging into the ADF source code

	Summary

	Chapter 7: Securing an ADF Essentials Application
	Apache Shiro basics
	Getting the software
	Installing the packages in your application
	Configuring your application for Shiro

	Advanced Shiro
	User database
	Form-based authentication
	The login page
	The login bean
	The login method
	The user filter
	The Shiro configuration

	Accessing the user

	Implementing authorization
	Can I see some ID, please?
	Are you a member, Sir?
	Disabling elements
	Removing elements

	Securing task flows

	Summary

	Chapter 8: Build and Deploy
	Creating a build script
	Creating the script
	Deploying a single application
	Building the master application
	Starting point
	Building the application EAR file
	Building all the subsystems
	Copying all ADF libraries
	Putting it all together

	Automated deployment to GlassFish
	Deploying from the command line
	Deploying from Ant

	Integrating other functionality in your build
	Preparing to go live
	Cleaning up your code
	Database connections
	Deployment platforms
	Print statements

	Tuning your ADF application

	Summary

	Index

